

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

FINGERPRINT RECOGNITION

by

Graig T. Diefenderfer

June 2006

 Thesis Advisor: Monique P. Fargues
 Second Reader: Roberto Cristi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Fingerprint Recognition
6. AUTHOR(S) Graig T. Diefenderfer

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The use of biometrics is an evolving component in today’s society. Fingerprint

recognition continues to be one of the most widely used biometric systems. This thesis
explores the various steps present in a fingerprint recognition system. The study
develops a working algorithm to extract fingerprint minutiae from an input fingerprint
image. This stage incorporates a variety of image pre-processing steps necessary for
accurate minutiae extraction and includes two different methods of ridge thinning.
Next, it implements a procedure for matching sets of minutiae data. This process goes
through all possible alignments of the datasets and returns the matching score for the
best possible alignment. Finally, it conducts a series of matching experiments to
compare the performance of the two different thinning methods considered. Results show
that thinning by the central line method produces better False Non-match Rates and
False Match Rates than those obtained through thinning by the block filter method.

15. NUMBER OF
PAGES

153

14. SUBJECT TERMS
Biometrics, Fingerprint, Minutiae, Thinning, Matching

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

FINGERPRINT RECOGNITION

Graig T. Diefenderfer
Ensign, United States Navy

B.S., United States Naval Academy, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Graig T. Diefenderfer

Approved by: Monique P. Fargues
Thesis Advisor

Roberto Cristi
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and
Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The use of biometrics is an evolving component in

today’s society. Fingerprint recognition continues to be

one of the most widely used biometric systems. This thesis

explores the various steps present in a fingerprint

recognition system. The study develops a working algorithm

to extract fingerprint minutiae from an input fingerprint

image. This stage incorporates a variety of image pre-

processing steps necessary for accurate minutiae extraction

and includes two different methods of ridge thinning.

Next, it implements a procedure for matching sets of

minutiae data. This process goes through all possible

alignments of the datasets and returns the matching score

for the best possible alignment. Finally, it conducts a

series of matching experiments to compare the performance

of the two different thinning methods considered. Results

show that thinning by the central line method produces

better False Non-match Rates and False Match Rates than

those obtained through thinning by the block filter method.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. BACKGROUND ...1
B. OBJECTIVE ..2
C. THESIS ORGANIZATION3

II. BIOMETRICS ..5
A. SYSTEMS IN USE TODAY5

1. Fingerprint5
2. Iris ..6
3. Voice ...7
4. Face ..8
5. Gait ..9
6. Hand Geometry10
7. Multimodal11

B. ISSUES WITH BIOMETRICS12
1. Security12
2. Privacy13
3. Accuracy14
4. Scale ..16

C. CONCLUSION ..17
III. FINGERPRINT MATCHING19

A. HISTORY ...19
B. FINGERPRINT DETAILS20
C. FINGERPRINT MATCHING TECHNIQUES23

1. Minutiae-Based23
2. Image-Based24
3. Ridge Feature-Based26

D. CONCLUSION ..27
IV. MINUTIAE DETECTION29

A. IMAGE PRE-PROCESSING29
1. Binarization29
2. Thinning32

a. Block Filtering32
b. Central Line49

3. Final Noise Removal56
B. MINUTIAE EXTRACTION57
C. CONCLUSION ..66

V. MINUTIAE MATCHING67
A. DATA FORMAT67
B. MATCHING PROCESS68
C. CONCLUSION ..72

VI. EXPERIMENTAL RESULTS73

 viii

A. SYNTHETIC DATABASE GENERATION73
B. TEMPLATE CREATION74
C. SIMULATION ..74
D. CONCLUSION ..81

VII. CONCLUSIONS AND RECOMMENDATIONS83
A. CONCLUSIONS83
B. RECOMMENDATIONS83

APPENDIX A. MATLAB CODE85
LIST OF REFERENCES ...127
INITIAL DISTRIBUTION LIST131

 ix

LIST OF FIGURES

Figure 2.1. Fingerprint sensors in everyday products.
(From: [Mainguet, 2006]).........................5

Figure 2.2. Example of an iris pattern. (From: [Daugman,
2004]) 6

Figure 2.3. Facial image variations amongst the same
subject. (From: [Gao & Leung, 2002]).............8

Figure 2.4. Samples recorded from a gait cycle. (From:
[Boulgouris, Hatzinakos, & Plataniotis, 2005])...9

Figure 2.5. Commercial three-dimensional scanner. (From:
[Faundez-Zanuy, 2005])..........................10

Figure 2.6. Multibiometric categories. (From: [Ko, 2005])...12
Figure 2.7. Receiver Operating Characteristic (ROC) curve.

(From: [Jain, Ross, & Prabhakar, 2004]).........16
Figure 3.1. Singular regions and core points. (From:

[Maltoni, Maio, Jain, & Prabhakar, 2003]).......21
Figure 3.2. Examples of fingerprint classes. (From:

[Maltoni, Maio, Jain, & Prabhakar, 2003]).......22
Figure 3.3. Basic types of minutiae. (From: [Maltoni, Maio,

Jain, & Prabhakar, 2003]).......................23
Figure 4.1. Results of image binarization...................31
Figure 4.2. Impact of performing valley dilation............34
Figure 4.3. Illustration of left to right block filtering

on a magnified illustration of a ridge..........35
Figure 4.4. Illustration of right to left block filtering

on a magnified illustration of a ridge..........36
Figure 4.5. Output of filtering in both directions..........37
Figure 4.6. Seven-by-seven pixel box for removing isolated

noise. 38
Figure 4.7. Combined image from both scans shown in Figure

4.5 following isolated noise removal............40
Figure 4.8. Surrounding pixels in two-by-two block..........41
Figure 4.9. Unwanted spurs along ridges.....................42
Figure 4.10. Eight sets of adjacent pixels used in computing

crossing number.................................43
Figure 4.11. Visual examples of crossing number. (After:

[Maltoni, Maio, Jain, & Prabhakar, 2003]).......44
Figure 4.12. Impact of removing spurs........................45
Figure 4.13. Duplicate horizontal and vertical lines.........46
Figure 4.14. Deleting duplicate horizontal lines.............47
Figure 4.15. Deleting duplicate vertical lines...............48
Figure 4.16. Thinned image from block filtering..............49
Figure 4.17. Two pixels width in vertical direction check.

(After: [Ahmed & Ward, 2002])...................51

 x

Figure 4.18. Two pixels width in horizontal direction check.
(After: [Ahmed & Ward, 2002])...................52

Figure 4.19. Thinning rules. (After: [Ahmed & Ward, 2002])...53
Figure 4.20. Diagonal thinning rules. (After: [Patil,

Suralkar, & Sheikh, 2005])......................54
Figure 4.21. The thinning process to central lines...........55
Figure 4.22. Impact of deleting short island segments........57
Figure 4.23. Ellipse generated to reject ridge endings along

the boundaries of an image......................58
Figure 4.24. Definition of minutiae angles...................59
Figure 4.25. Rules for calculating termination angles........60
Figure 4.26. Termination/bifurcation duality. (After:

[Maltoni, Maio, Jain, & Prabhakar, 2003]).......61
Figure 4.27. Display of minutiae detected by block filter

and central line thinning.......................63
Figure 4.28. Magnified display of minutiae detected by block

filter thinning superimposed on original
fingerprint. Terminations denoted by a square,
bifurcations denoted by a diamond...............64

Figure 4.29. Magnified display of minutiae detected by
central line thinning superimposed on original
fingerprint. Terminations denoted by a square,
bifurcations denoted by a diamond...............65

Figure 6.1. Matching process for computing the FNMR.........76
Figure 6.2. Matching process for computing the FMR..........77

 xi

LIST OF TABLES

Table 4.1. Steps in block filter process...................33
Table 5.1. Sample matrix of minutiae data..................68
Table 6.1. Filename convention for transformations.........74
Table 6.2. Central line thinning FNMR/FMR data.............78
Table 6.3. Block filter thinning FNMR/FMR data.............79
Table 6.4. Block filter thinning FNMR/FMR data using no

rotated input images............................80

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

First, I would like to thank Professor Fargues for

devoting the time in leading me through this lengthy

process. I would also like to thank Professor Cristi for

being the second reader for this thesis. Next, I want to

thank the U.S. Naval Academy Electrical Engineering

department for sparking my interest in this subject matter.

Finally, I want to thank the Misfits and Team Ensign for

making my time in Monterey quite enjoyable.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Biometrics is the study of automatically recognizing

humans by means of inherently unique physical or behavioral

characteristics. Currently, one of the most widespread

biometrics is fingerprint recognition. The study of

fingerprint attributes dates back to the 1600s, and the

first automated fingerprint recognition systems began to be

developed in the 1960s. Even so, the application of

fingerprint recognition continues to expand in our society.

From laptop computers to office buildings, these systems

are used as a convenient way of restricting access to

authorized users.

A fingerprint is comprised of a pattern of lines,

known as ridges. The spaces between individual ridges are

referred to as valleys. As a ridge progresses, it can

either come to an end, or it can split into two ridges.

The location where a ridge comes to an end is known as a

termination, and the location where a ridge divides into

two separate ridges is called a bifurcation. Terminations

and bifurcations are the two basic types of minutiae, which

are the points of interest within a fingerprint. By

detecting the minutiae in a fingerprint, an effective

matching process can be implemented.

The main objective of this research is to create a

fingerprint recognition system using the MATLAB

environment. Essentially, this study involves reliably

extracting minutiae from a fingerprint image and comparing

this information to previously defined minutiae data. The

 xvi

overall process is split into three primary steps: image

pre-processing, minutiae extraction, and minutiae matching.

• Image Pre-Processing

The first step involves converting the original

grayscale image to a black-and-white image. Known as

binarization, this step applies a threshold to the pixels

in the grayscale image, where any pixel with a value above

a user-specified threshold gets assigned a value of one,

whereas any pixel with a value below the threshold gets

assigned a value of zero. To ensure minutiae details

extracted in later steps are accurate, the binarization

process requires careful selection of a threshold value

that does not eliminate ridge information and does not

produce false ridge structures.

The next phase in the image pre-processing stage

involves thinning, i.e., reducing the width of each ridge

to one pixel. Two different thinning methods were examined

in this research. The first is known as block filter

thinning and was developed from scratch in the study. This

method preserves pixels along the outer boundaries of the

ridges by deleting those pixels that lie within a three-by-

three pixel block beneath the outer pixels on each ridge.

There are several stages in this thinning phase designed to

remove spurious segments generated during the initial block

filtering process. Meanwhile, the second thinning method

considered in the study attempts to thin the ridges to

their central lines only, thereby ensuring that no ridge

information has been lost in the thinning process.

 xvii

• Minutiae Extraction

The second step in the overall fingerprint recognition

process involves extracting the minutiae information from

the images. The minutiae extraction process is applied to

the image with ridges reduced to a width of one pixel and

unwanted noise removed. This detection step involves

scanning the image to locate fingerprint terminations and

bifurcations. The next stage in the minutiae extraction

process involves computing the orientation angle for each

identified minutia. Specifically, the orientation angle

for a termination is defined as the angle between the

horizontal and the ridge direction as it ends. The

orientation angle for a bifurcation is defined as the angle

between the horizontal and the direction of the original

ridge moving away from the divergence.

At that point, only the minutiae information needs to

be stored for later matching. Original fingerprint images

are no longer needed, which significantly decreases storage

requirements. In this study, the minutiae information is

stored matrix-wise, with each row representing a different

minutia. Column one and two of this matrix represent the

row and column position of the minutiae within the image,

respectively. Column three stores the orientation angle of

the minutiae, and column four indicates the type of

minutiae.

• Minutiae Matching

The third step in the overall fingerprint recognition

process involves matching sets of minutiae data. During

the recognition phase, an input image is processed and its

minutiae information matched against fingerprint minutiae

 xviii

information from authorized users, known as templates.

Note that there is likely to be some degree of rotational

or displacement difference between the input and template

image. The processing scheme considered in this study

takes this into account and implements the matching

processing in a polar coordinate system. By doing so, the

robustness of the verification scheme is increased to

handle displacements between input and template images.

The next process in this stage involves computing

matching scores between input and template images, which

represent the similarity between the two sets of data. In

this system, the matching score ranges from zero to one,

where a matching score of zero and one represent a complete

mismatch and perfect match between the input and template,

respectively. This matching score is compared to the

system threshold to arrive at the final decision. The

input and template fingerprints are determined to be from

the same finger when the matching score is greater than the

threshold. Conversely, the input and template fingerprints

are determined to be from different fingers when the

matching score is less than the threshold.

• Simulation

A database of fingerprints was generated using the

SFINGE software to test the overall system. For each

fingerprint, a template was created by sending the image

through the previous discussed steps until the matrix of

minutiae data was obtained. Also, a different impression

for each fingerprint was generated by performing horizontal

shifts left and right, vertical shifts up and down, and

clockwise and counterclockwise rotations.

 xix

Creating the different impressions simulates variable

finger alignments in successive login attempts. A series

of matching processes using the two thinning methods was

conducted between the generated images and the templates.

Results show that the central line thinning produces better

overall results, and that the block filter thinning

method’s performance degraded significantly when dealing

with rotated input images. For most rotated input images,

using the block filter thinning method caused the system to

incorrectly conclude that two fingerprints from the same

finger were from different fingers. The central line

thinning method, however, worked well for all variations of

input images. This shows that this method is rotational

invariant and will accurately locate the minutiae

regardless of the input alignment. Therefore, the central

line thinning method should be used for the thinning

process in a real world system.

As a whole, the developed fingerprint recognition

system works well. From ridge thinning, to minutiae

extraction, to minutiae matching, the system produces

reliable results. In the coming years, biometrics will

continue to play a larger role in society, and fingerprint

recognition will likely remain at the center of this

expansion.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The use of biometrics continues to evolve in many

areas of society. Fingerprint readers can be found on

laptop computers, iris scanners are being installed at

locations of heightened security, and voice recognition

software is being incorporated into automobiles. Whatever

the reason for the biometric system, it is evident that

their use will continue to develop during the coming years.

This chapter presents an overview of the basic concepts

behind biometric systems.

A. BACKGROUND

In order for a human physiological or behavioral

characteristic to be used as a beneficial biometric trait,

it must satisfy four criteria. First of all, it needs to

be universal, with each person in possession of the given

characteristic. Secondly, it should be a distinctive

quality, meaning there should be a significant distinction

in the characteristic between any two given persons. Next,

there needs to be a certain permanence inherent to the

feature, i.e., the measured elements should remain

relatively invariable over a period of time. Last of all,

the attribute should be easy to collect and measured

quantitatively [Jain, Ross, & Prabhakar, 2004]. Other

issues, such as performance, acceptability, and

circumvention, need to be examined for a system that

implements personal recognition with biometrics. The

performance of a system concerns the accuracy and speed of

recognition. Meanwhile, the acceptability of a system

refers to the willingness of the general population to

allow use of a particular biometric in everyday life.

2

Finally, circumvention deals with how easy it is to fool

the system through spoofing. Therefore, a good biometric

system will have high accuracy and speed, be widely

accepted among the public, and have high resistance to

fraudulent attacks [Jain, Ross, & Prabhakar, 2004].

There are two main operating modes for biometric

systems. The first, and simplest mode, is called

verification. Here, it is necessary for the person to

claim an identity through an identification number, user

name, or other means. The system then gathers the input

data and compares it to the template data previously stored

for that person. This comparison is a one-to-one

comparison, and the system is only trying to verify that

the person attempting to gain access is truly who he claims

to be. If the input data does not match the template data,

the system will deny access. The second operating mode is

called identification. In this mode, the system will

compare the input data to all sets of template data already

stored. This operation is a one-to-many comparison, and

there is no need for the person to claim an initial

identity. If the input data matches any of the template

data sets, the system will allow access [Jain, Ross, &

Prabhakar, 2004]. Note that the identification mode is

more computationally intensive than verification mode since

it requires conducting a comparison with each template.

B. OBJECTIVE

The objective of this research is to develop a

fingerprint recognition system using MATLAB. Beginning

with an input image, the system processes the data and

collects the identifying features of the fingerprint.

Next, it compares this information to previously stored

3

information from various fingerprints. After making the

comparison, the system determines if the input image

matches the data of a fingerprint already in the database.

A few different processing methods are used to extract the

identifying features, and the performance of each technique

is analyzed.

C. THESIS ORGANIZATION

The remainder of this thesis provides a detailed

description of the research conducted. Chapter II presents

background information on biometrics in general, while

Chapter III focuses specifically on fingerprints. Next,

Chapter IV provides a detailed account of the developed

minutiae detection process. From here, Chapter V discusses

the minutiae matching process used in this system. Chapter

VI features the experimental results obtained from the

complete system. Finally, conclusions and recommendations

are presented in Chapter VII.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BIOMETRICS

This chapter introduces a variety of common biometric

systems in use today or currently being developed. It then

proceeds to discuss some of the most important issues

concerning biometrics in general.

A. SYSTEMS IN USE TODAY

1. Fingerprint

Fingerprint recognition has been present for a few

hundred years. Nowadays, the technology in this area has

reached a point where the cost of purchasing a fingerprint

scanner is very affordable. For this reason, these systems

are becoming more widespread in a variety of applications.

As seen in Figure 2.1, Cell phones, PDAs, and personal

computers are a few examples of items incorporating

fingerprint recognition to increase user security.

Figure 2.1. Fingerprint sensors in everyday

products. (From: [Mainguet, 2006])

Fingerprint systems are generally best utilized in

verification systems or small-scale identification systems

because a large-scale identification system requires

extensive computational resources under current products.

In addition, a large system would undoubtedly encounter

some fingerprints that are unsuitable for use, due to cuts

6

or other defects [Jain, Ross, & Prabhakar, 2004].

Therefore, cell phones and computers, which both

potentially have a small number of users, are ideal

products for this technology.

2. Iris

Iris recognition has taken on greater interest in

recent years. As this technology advances, purchasing

these systems has become more affordable. These systems

are attractive because the pattern variability of the iris

among different persons is extremely large. Thus, these

systems can be used on a larger scale with a small

possibility of incorrectly matching an imposter. Also, the

iris is well protected from the environment and remains

stable over time. In terms of localizing the iris from a

face, its distinct shape allows for precise and reliable

isolation [Daugman, 2004]. Figure 2.2 shows the unique

iris pattern data extracted from a sample input.

Figure 2.2. Example of an iris pattern. (From:

[Daugman, 2004])

The accuracy and speed of current iris systems allows

the possibility of implementing this technique in a large-

scale system. The iris of each person is distinctive, and

7

identical twins even have different patterns. Since it is

extremely difficult to alter the texture of the iris

through surgery, it would be difficult for someone to

circumvent the system. Along the same line, it is

relatively easy for the system to detect when an artificial

iris, such as a specially made contact lens, is being used

in an attempt to gain access [Jain, Ross, & Prabhakar,

2004]. Thus, as time goes on, it is likely that iris

recognition systems will be widely used in many areas of

society.

3. Voice

Voice recognition offers a dynamic range of processing

possibilities. Unlike fingerprint and iris recognition,

which are limited to a few techniques, voice recognition

has a variety of methods for implementation. Specifically,

this flexibility is evident in a system that forces a user

to speak a phrase that is different for each attempt. This

versatility makes it much more difficult for someone to

spoof the system. At the same time, it requires the system

to have a more advanced detection algorithm [Faundez-Zanuy

& Monte-Moreno, 2005].

Another reason voice-based systems are dynamic is

because voice is a combination of physiological and

behavioral biometrics. The physiological component is

governed by physical characteristics, which are invariant

for an individual, while the behavioral element can change

over time. This combination offers a wider range of

possibilities among the general population. A phone-based

speaker recognition system provides a practical

application, as it allows for recognition from a remote

location, where collection of other biometric data may not

8

be possible. Speech features, however, are sensitive to

background noise, different microphones, and degradation

over a communication channel, and care should be taken to

ensure the quality of the signal remains at an acceptable

level [Jain, Ross, & Prabhakar, 2004].

4. Face

There have been significant achievements in the face

recognition field over the past few years. Thanks to these

advancements, this problem appears to eventually become

technologically feasible as well as economically realistic.

Several companies now offer face recognition software that

can produce high-accuracy results with a database of over

1000 people. In addition, current research involves

developing more robust approaches that accounts for changes

in lighting, expression, and aging, where potential

variations for a given person are illustrated in Figure

2.3. Also, other problem areas being investigated include

dealing with glasses, facial hair, and makeup [Pentland &

Choudhury, 2000].

Figure 2.3. Facial image variations amongst the
same subject. (From: [Gao & Leung, 2002])

A facial recognition system has numerous advantages

over other biometric systems. First of all, the system can

be unobtrusive, operating at a large distance from the

subject. Also, it does not require the person to have a

set interaction with the system. The camera only needs to

capture a useable image of the face. Next, the system is

9

usually passive and can operate on fairly low power.

Finally, a face recognition system would probably be widely

accepted by the general public. Since we perform facial

recognition in our daily life, an automated system that

performs the same task is likely to have more support than

other, more intrusive biometrics [Pentland & Choudhury,

2000].

5. Gait

Gait-based recognition involves identifying a person’s

walking style. Although these systems are currently very

limited, there is a significant amount of research being

conducted in this area. At this time, however, it is

unknown if the obtainable gait parameters provide enough

discrimination for a system to be applied on a large scale.

Furthermore, studies have shown that gait changes over time

and is also affected by clothes, footwear, walking

surfaces, and other conditions. Figure 2.4 outlines the

various stages of a gait cycle. [Boulgouris, Hatzinakos, &

Plataniotis, 2005].

Figure 2.4. Samples recorded from a gait cycle.

(From: [Boulgouris, Hatzinakos, & Plataniotis, 2005])

Acquisition of gait is similar to the process used for

acquiring facial images and can be performed from a

distance without requiring the subject’s cooperation. As a

result, this system can be implemented covertly for

10

enhanced security. Furthermore, it is difficult to hide or

fake one’s gait, particularly when the presence of the

system is unknown. A disadvantage to gait recognition is

that it uses a sequence of video footage, making the

process input intensive and computationally expensive

[Jain, Ross, & Prabhakar, 2004].

6. Hand Geometry

Hand geometry systems are one of the most basic

biometric systems in use today. A two-dimensional system

can be implemented with a simple document scanner or

digital camera, as these systems only measure the distances

between various points on the hand. Meanwhile, a three-

dimensional system provides more information and greater

reliability. These systems, however, require a more

expensive collection device than the inexpensive scanners

that can be used in a two-dimensional system. An example

of a commercial three-dimensional scanner is shown in

Figure 2.5. As seen in this image, the physical size of

the scanner limits its application in portable devices.

Figure 2.5. Commercial three-dimensional scanner.

(From: [Faundez-Zanuy, 2005])

The primary advantage of hand geometry systems is that

they are simple and inexpensive to use. Also, poor weather

and individual anomalies such as dry skin or cuts along the

11

hand do not appear to negatively affect the system. The

geometry of the hand, however, is not a very distinctive

quality. In addition, wearing jewelry or other items on

the fingers may adversely affect the system’s performance.

Finally, personal limitations in dexterity due to arthritis

or other medical condition also have a negative impact.

Therefore, these systems generally should not be used in a

large-scale environment [Jain, Ross, & Prabhakar, 2004].

7. Multimodal

Multimodal systems employ more than one biometric

recognition technique to arrive at a final decision. These

systems may be necessary to ensure accurate performance in

large dataset applications. Combining several biometrics

in one system allows for improved performance as each

individual biometric has its own strengths and weaknesses.

Using more than one biometric also provides more diversity

in cases where it is not possible to obtain a particular

characteristic for a person at a given time. Although

acquiring more measurements increases the cost and

computational requirements, the extra data allows for much

greater performance [Ko, 2005].

12

Figure 2.6. Multibiometric categories. (From: [Ko,

2005])

Similar to multimodal systems, there are several other

techniques aimed at improving the performance of a

biometric system, as outlined in Figure 2.6. Multi-

algorithmic techniques acquire a single sample from one

sensor and process this signal with two or more different

algorithms. Multi-instance systems use a sensor to obtain

data for different instances of the same biometric, such as

capturing fingerprints from different fingers of the same

person. Multi-sensorial systems sample the same biometric

trait with two or more different sensors, such as scanning

a fingerprint using both optical and capacitance scanners

[Ko, 2005].

B. ISSUES WITH BIOMETRICS

1. Security

Maintaining the integrity of a biometric system is a

critical issue. This concept deals with ensuring that the

input to the system is in fact presented by its legitimate

13

owner, and also assuring that the input pattern is matched

with an authentic template pattern. There are numerous

ways someone can attempt to bypass a biometric system, all

of which endeavor to attack a weakness in the system. The

primary weaknesses in a system arise from the fact that

biometrics are not secrets. In addition, the biometric

characteristics of a person can not be altered. When a

biometric identifier has been compromised, an attacker can

use this information to develop a fraudulent dataset to

fool the system into accepting his access. As a result,

the algorithm may not be able to detect falsified data when

the matching process is completely autonomous and without

human monitoring [Jain, Pankanti, Prabhakar, Hong, & Ross,

2004].

Along the same lines, once someone’s biometric

information has been compromised, it is not possible to

change this information. Unlike a password or PIN number,

it is not possible for someone to alter his natural

characteristics. For example, fingerprints remain the same

throughout an individual’s lifetime and can not be changed

when they have been accessed and used for fraudulent

purposes. A current technique to combat fraudulent claims

is known as liveness detection. In this technique, the

system can determine if the input measurements are

originating from an inanimate object instead of the actual

person [Jain, Pankanti, Prabhakar, Hong, & Ross, 2004].

2. Privacy

Another important issue in the biometric field

concerns maintaining privacy. Whenever a person has a

biometric identifier recorded, the individual loses some

anonymity that cannot be recovered. Critics of biometrics

14

envision this information being used in coming years by the

government to monitor actions and behaviors of all

citizens. While this idea is not likely to be implemented

in the near future, its possibility leads many to be

cautious of giving up biometric identifiers. Also, it is

possible that some biometrics capture more information than

one’s identity. Some schemes may provide additional

information, such as a person’s health and medical history.

Although this idea is currently undeveloped, its potential

impact would likely invoke concern among the public

[Woodward, 1997].

Nevertheless, biometrics can be used as a highly

effective way to maintain individual privacy despite the

negative issues associated with their uses. If one’s

personal information can only be accessed through a

biometric matching process, this information will remain

much safer than if its access were controlled by a standard

password. Similarly, the possibility of a thief being able

to use a stolen card would greatly diminish if a credit

card could only be used when supplied with the correct

fingerprint. Therefore, these advantages tend to outweigh

the concerns over losing a degree of personal privacy by

providing biometric data. In addition, many products today

do not even store the template data in its original form.

Instead, the data is stored in an encrypted form that is

only recoverable by that specific system to prevent an

attacker from using the template information in its own

system [Jain, Ross, & Prabhakar, 2004].

3. Accuracy

There are two basic types of errors that occur in a

biometric system. The first error occurs when the system

15

mistakes measurements from two different persons to be from

the same person. This is called a false match, or

sometimes termed a false acceptance. The second type of

error is known as a false non-match and happens when the

system mistakes measurements from the same person to be

from two different persons. This scenario is also referred

to as a false rejection [Jain, Ross, & Prabhakar, 2004].

In terms of probabilistic quantities, the False Match

Rate (FMR) is the probability that the system will decide

to allow access to an imposter. Meanwhile, the False Non-

match Rate (FNMR) represents the probability that the

system denies access to an approved user. In each

biometric system, there is a tradeoff between the FMR and

FNMR because both of these values are functions of what is

called the “system threshold”. When a system makes a

comparison between an input image and an image already

stored in the database, it calculates a matching score for

the two images. This matching score provides a numerical

value of the similarity between the two images. A high

matching score indicates high similarity, whereas a low

matching score indicates low similarity between the images.

The matching score is compared to the system threshold,

which is a predefined level in the system. The images are

classified as a match when the matching score is greater

than the system threshold, and a non-match is produced when

the matching score is less than the system threshold.

Modifying the threshold has an effect on the performance of

the system. When the threshold is decreased, meaning there

is a less stringent matching score, the FMR will increase

while the FNMR decreases. In such cases, more imposter

matches will occur since it is easier to produce a match

16

with the lower threshold. At the same time, the lower

threshold allows for fewer false non-matches for approved

users. Similarly, as the threshold increases, the FMR

decreases while the FNMR increases. This would be the case

for a high security application, where a system is setup to

greatly reduce the number of false matches. As a side

effect, the increased threshold causes more false non-

matches due to the stricter matching requirements.

The performance of a system is commonly expressed in a

receiver operating characteristic (ROC) curve. In this

graph, the FMR is plotted against the FNMR of the system

for various threshold values. As shown in Figure 2.7, as

the FNMR increases, the FMR of the system decreases.

Conversely, decreasing the FNMR results in an increase to

the FMR [Jain, Ross, & Prabhakar, 2004].

Figure 2.7. Receiver Operating Characteristic (ROC)
curve. (From: [Jain, Ross, & Prabhakar, 2004])

4. Scale

A final issue concerning biometric systems is the

number of individuals enrolled in the database. For each

individual, there is a unique set of template data that

corresponds to that person’s identity. In a verification

system, the number of people enrolled does not have a

17

significant impact because the match is performed solely on

a one-to-one basis. In an identification system, however,

the matching process is more complex and is greatly

affected by the number of enrollees as the system must

perform a one-to-one comparison for each set of template

data. For a very large system, this process can take a

significant amount of time. One solution to reduce this

time involves categorizing the template data based on a

significant pattern. In the case of a fingerprint system,

the initial categorization may divide the templates into

classes based on their global patterns. Although this

procedure is difficult to implement in practice, it serves

as a foundation for reducing the scale of the system (Jain,

Pankanti, Prabhakar, Hong, & Ross, 2004).

C. CONCLUSION

Biometric applications continue to evolve in all areas

of society, and care needs to be taken to ensure a specific

biometric is suited for a given application. More complex

biometrics, such as iris and fingerprint recognition, may

be better suited for a large-scale application than a more

basic biometric would, such as hand geometry. Meanwhile,

it is still unknown what capabilities will be obtainable

through biometrics currently under development,

specifically face and gait recognition. In any case, all

biometrics raise issues which need to be examined. The

following chapter will introduce the foundations of one the

most widespread biometrics: the fingerprint.

18

THIS PAGE INTENTIONALLY LEFT BLANK

19

III. FINGERPRINT MATCHING

This chapter presents a brief history of the evolution

of fingerprint identification. It also provides the basic

information regarding the composition of a fingerprint.

Finally, it discusses a variety of matching techniques used

today.

A. HISTORY

Fingerprints have been scientifically studied for a

number of years in our society. The characteristics of

fingerprints were studied as early as the 1600s.

Meanwhile, using fingerprints as a means of identification

first transpired in the mid-1800s. Sir William Herschel,

in 1859, discovered that fingerprints do not change over

time and that each pattern is unique to an individual.

With these findings, he was the first to implement a system

using fingerprints and handprints to identify an individual

in 1877. At the time, his system was a simple one-to-one

verification process. By 1896, police forces in India

realized the benefit of using fingerprints to identify

criminals, and they began collecting the fingerprints of

prisoners along with their other measurements

[International Biometric Group, 2003].

With a growing database of fingerprint images, it soon

became desirable to have an efficient manner of classifying

the various images. Between 1896 and 1897, Sir Edward

Henry developed the Henry Classification System, which

quickly found worldwide acceptance within a few years.

This system allows for logical categorization of a complete

set of the ten fingerprint images for a person. By

establishing groupings based on fingerprint pattern types,

20

the Henry System greatly reduces the effort of searching a

large database. Until the mid-1990s, many organizations

continued to use the Henry Classification System to store

their physical files of fingerprint images [International

Biometric Group, 2003].

As fingerprints began to be utilized in more fields,

the number of requests for fingerprint matching began to

increase on a daily basis. At the same time, the size of

the databases continued to expand with each passing day.

Therefore, it soon became difficult for teams of

fingerprint experts to provide accurate results in a timely

manner. In the early 1960s, the FBI, Home Office in the

United Kingdom, and Paris Police Department began to devote

a large amount of resources in developing automatic

fingerprint identification systems. These systems allowed

for an improvement in operational productivity among law

enforcement agencies. At the same time, the automated

systems reduced funding requirements to hire and train

human fingerprint experts. Today, automatic fingerprint

recognition technology can be found in a wide range of

civilian applications [Maltoni, Maio, Jain, & Prabhakar,

2003].

B. FINGERPRINT DETAILS

A fingerprint pattern is comprised of a sequence of

ridges and valleys. In a fingerprint image, the ridges

appear as dark lines while the valleys are the light areas

between the ridges. A cut or burn to a finger does not

affect the underlying ridge structure, and the original

pattern will be reproduced when new skin grows. Ridges and

valleys generally run parallel to each other, and their

patterns can be analyzed on a global and local level. At

21

the global level, the fingerprint image will have one or

more regions where the ridge lines have a distinctive

shape. These shapes are usually characterized by areas of

high curvature or frequent ridge endings and are known as

singular regions. The three basic types of these singular

regions are loop, delta, and whorl, examples of which are

shown in Figure 3.1. Many matching algorithms use the

center of the highest loop type singularity, known as the

core, to pre-align fingerprint images for better results.

As shown in Figure 3.2, these three basic singularities

help form the five major classes of fingerprints [Maltoni,

Maio, Jain, & Prabhakar, 2003].

Figure 3.1. Singular regions and core points.

(From: [Maltoni, Maio, Jain, & Prabhakar, 2003])

22

Figure 3.2. Examples of fingerprint classes. (From:

[Maltoni, Maio, Jain, & Prabhakar, 2003])

While the global level allows for a general

classification of fingerprints, analyzing the image at the

local level provides a significant amount of detail. These

details are obtained by observing the locations where a

ridge becomes discontinuous, known as minutiae points. The

most common types of minutiae are shown in Figure 3.3. In

general, a ridge can either come to an end, which is called

a termination, or it can split into two ridges, which is

called a bifurcation. The other types of minutiae are

slightly more complicated combinations of terminations and

bifurcations. For example, a lake is simply a sequence of

two bifurcations in opposing directions, while an

independent ridge features two separate terminations within

a close distance. The FBI minutiae-coordinate model

considers only terminations and bifurcations within a

fingerprint image. In all, analyzing a fingerprint on the

local level provides the necessary information to

accurately distinguish one fingerprint from another.

23

Figure 3.3. Basic types of minutiae. (From:
[Maltoni, Maio, Jain, & Prabhakar, 2003])

C. FINGERPRINT MATCHING TECHNIQUES

1. Minutiae-Based

There are several categories of fingerprint matching

techniques. One such category employs methods to extract

minutiae from the fingerprint images, and then compares

this data to the previously stored template data sets. In

most cases, the minutiae details are stored as sets of

points in the two-dimensional plane. For each minutia, the

x- and y-coordinates indicating its location within the

image are recorded. Other stored parameters may include

the orientation angle of each minutiae as well as the

specific type of minutiae located. Generally, minutiae-

based methods require a significant amount of pre-

processing to produce accurate results [Maltoni, Maio,

Jain, & Prabhakar, 2003].

There are a variety of methods in use today for

extracting the minutiae from a fingerprint. One method

involves thinning the fingerprint image, then performing a

scan with a three pixel-by-three pixel block across the

entire image. This process will be explained in full

detail in the upcoming Chapters. Another method

24

incorporates a bank of filters in order to extract the

minutiae. Specifically, the region of interest gets

filtered in eight different directions, which completely

captures the local ridge characteristics using a bank of

Gabor filters. When the Gabor filters are properly tuned,

they are able to remove noise while maintaining the true

ridge and valley structures. Since a minutiae point can be

considered an anomaly among locally parallel ridges, these

points can be detected after applying the bank of Gabor

filters [Jain, Prabhakar, Hong, & Pankanti, 2000].

2. Image-Based

Image-based techniques are another significant

category of fingerprint matching. These processes are

appealing because they do not require a significant amount

of pre-processing to produce acceptable results. In most

cases, the only pre-processing methods that are applied are

a binarization and thinning phase. Therefore, imaged-based

techniques have a better computational efficiency than the

standard minutiae-based techniques. Also, for low quality

fingerprint images, image-based techniques produce better

results than minutiae extraction methods, where it may be

difficult to reliably extract the actual minutiae points

[Seow, Yeoh, Lai, & Abu, 2002].

An important component for image-based matching is

dealing with rotation. Since the input image might be

oriented differently than the template image, it is

necessary to apply a rotational correction to achieve the

best results. Many systems superimpose the input image

with the template image and compute the correlation between

corresponding pixel values for a variety of displacement

and rotational values. The maximum correlation value

25

produced in this process relates to the best possible

alignment between the input and the template [Maltoni,

Maio, Jain, & Prabhakar, 2003]. A similar technique

involves using the phase components from two-dimensional

Discrete Fourier Transforms of the images to determine the

similarity between the two. If the matching score exceeds

the threshold for the system, the input and template are

treated as a match [Ito et al., 2005]. In most cases,

image-based techniques offer a good alternative when an

input image is of poor quality.

Another technique for an image-based fingerprint

matching system involves wavelets, where fingerprint

patterns are matched based on wavelet domain features. A

primary advantage to this approach is that these features

can be directly extracted from the fingerprint image

without applying any pre-processing steps. Once the core

point has been determined, a rectangular region surrounding

the core is established, which is referred to as the

central sub-image. This area is then divided into non-

overlapping square blocks of uniform size. From here, the

wavelet decomposition is computed on each block, and its

wavelet features are calculated. Next, a global feature

vector is formed, which includes the features extracted

from each block of the central sub-image. Once the feature

extraction has been performed, it is possible to conduct a

matching sequence with the template features. The lower

computational requirements of this process make using

wavelet features attractive to a small-scale system [Tico,

Immonen, Rämö, Kuosmanen, & Saarinen, 2001].

26

3. Ridge Feature-Based

In many images, minutiae extraction may be difficult

to conduct in an efficient manner. A low quality image

containing a large amount of noise presents problems for

minutiae-extracting algorithms. In such a case, other

options to acquire meaningful data from a fingerprint

become necessary. Analyzing various ridge features

provides this versatility. There are several features that

are commonly examined in today’s systems, ranging from

fairly basic to more advanced. At the basic end, the

physical size and shape of the external fingerprint

silhouette can be computed. Additionally, recording the

number, type, and position of singular regions provides

further information. Although there is much variation to

these numbers, this approach offers some data when little

else can be extracted [Maltoni, Maio, Jain, & Prabhakar,

2003].

On a slightly more advanced level, the spatial

relationship and geometrical attributes of the ridge lines

can be examined. Also, gathering global and local texture

information is another option. A final ridge feature that

can be analyzed is the location of sweat pores within the

ridges. Even though sweat pores are highly discriminant

among the population, detecting them requires an advanced

collection system, and their presence would most likely be

unnoticeable in low quality images. The basic ridge

features, however, are obtainable from any quality image.

Since minutiae-based methods require an image of good

quality, ridge features offer an alternative for poor

images. Furthermore, ridge feature-based techniques do not

have to be limited to images of poor quality. Instead,

27

they can be used in conjunction with minutiae-based

techniques for images of good quality. With more data to

be used in the matching process, the accuracy and

robustness of a system would undoubtedly increase [Maltoni,

Maio, Jain, & Prabhakar, 2003].

D. CONCLUSION

The use of fingerprints for identification purposes

has been present in our society for a number of years.

Their characteristics can be analyzed on a global level as

well as a local level. While the global characteristics

can provide a general classification, it is necessary to

analyze a fingerprint on the local level to obtain

distinctive classification details. One technique used on

the local level involves analyzing the minutiae points

within a fingerprint. This process will be examined in

further detail in the following chapter.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

IV. MINUTIAE DETECTION

Accurate minutiae detection is an essential component

for all minutiae-based fingerprint recognition systems.

Without accurate minutiae detection, the results and

performance of a system are not reliable. This chapter

explores the numerous techniques applied to achieve a

dependable minutiae detection system.

A. IMAGE PRE-PROCESSING

It is first necessary to apply several pre-processing

steps to the original fingerprint image to produce

consistent results in the classic minutiae extraction

procedure. Such steps generally include image

binarization, noise removal, and thinning. In this thesis,

we use the SFINGE software included in Maltoni, Maio, Jain,

and Prabhakar (2003) to develop noise-free fingerprint

images. This eliminates the need for a sensor noise

removal step and enables us to focus on the other steps

involved in the minutiae detection process. Note that

studies have shown that fingerprint matching algorithms

yields very similar performance results when applied to the

synthetic fingerprints created by SFINGE as when applied to

real fingerprint images [Maltoni, Maio, Jain, & Prabhakar,

2003].

1. Binarization

Image binarization is the process of turning a gray-

scale image to a black and white image. In a gray-scale

image, a pixel can take on 256 different intensity values

while each pixel is assigned to be either black or white in

a black and white image. This conversion from gray-scale

to black and white is performed by applying a threshold

30

value to the image. In MATLAB, a value of one means the

pixel is white, whereas a value of zero indicates the pixel

is black. For a gray-scale image, the pixels are decimal

values between zero and one. When a threshold is applied

to an image, all pixel values are compared to the input

threshold. Any pixel values below the threshold are set to

zero, and any values greater than the threshold are set to

one. By the end of this process, all pixel values within

the image are either zero or one, and the image has been

converted to binary format.

A critical component in the binarization process is

choosing a correct value for the threshold. If the

threshold is set too low, then the resulting binary image

will primarily be comprised of white pixels. Conversely,

if the threshold is set too high, the resulting image will

feature a large number of undesired black pixels. Thus,

the threshold must be selected carefully to ensure the data

information is preserved after the binarization. The

threshold values used in this study were selected

empirically by trial and error. In addition, the synthetic

fingerprints were generated with the absence of background

noise, allowing for a more effective binarization process.

An example of this process is shown in Figure 4.1.

31

Figure 4.1. Results of image binarization.

As seen above, the binarization converts a gray-scale

image to a purely black and white image. It should be

noted, however, that this process is not perfect, as some

of the ridges near the boundary of the image have been

turned to white. Although these ridges can be preserved by

simply increasing the value of the threshold, this action

may also produce highly undesired results. For example,

increasing the threshold could change a pixel separating a

ridge termination from a neighboring ridge from white to

black. This change would then make the termination appear

to connect with the neighboring ridge, thus creating a

false bifurcation where there should be a termination.

Therefore, simply increasing the threshold is not a viable

solution to preserve these ridges. Furthermore, the

32

majority of these imperfections can be removed in a later

step since these discontinuities only occur near the

perimeter.

2. Thinning

After binarization, another major pre-processing

technique applied to the image is thinning, which reduces

the thickness of all ridge lines to a single pixel.

Following thinning, the location and orientation of the

minutiae should still be the same as in the original image

to ensure accurate estimation of their locations. There

are a variety of thinning methods employed in today’s

systems. The first technique discussed, which involves

thinning along the outer boundary of the ridges via a block

filter, was developed from scratch during this study. The

second technique is an advanced method originally proposed

by Ahmed and Ward (2002) that focuses on thinning the

ridges to their central lines.

a. Block Filtering

This thinning method attempts to preserve the

outermost pixels along each ridge. First, a border of

white pixels is place at the boundaries of the black and

white image to ensure accurate implementation of the

following steps. As a result, all pixels within the first

five rows, last five rows, first five columns, and last

five columns are assigned a value of one. The steps in the

block filtering process commence following this. Table 4.1

outlines these steps and provides a brief description of

the goal for each step.

33

Table 4.1. Steps in block filter process.

• Step One: ridge width reduction

This step involves applying a morphological

process to the image to reduce the width of the ridges.

The two basic morphological processes are erosion and

dilation. Dilation is an operation that thickens objects

in a binary image, while erosion thins objects in a binary

image. In this step, a dilation process is used to thicken

the area of the valleys in the fingerprint. As a result of

34

dilating the valleys, the ridges are effectively eroded. A

conservative structuring element consisting of four ones

arranged in a two-by-two square is used for the valley

dilation to achieve some ridge width reduction while

minimizing the amount of discontinuities formed. Thus, the

valley dilation causes the width of the ridges to be

reduced by a slight amount. Figure 4.2 displays the effect

of implementing the valley dilation.

Figure 4.2. Impact of performing valley dilation.

• Step Two: passage of block filter

The next step involves performing a pixel-by-

pixel scan for black pixels across the entire image. Note

that in MATLAB, image rows are numbered in increasing order

35

beginning with the very top of the image as row one.

Similarly, columns are numbered in increasing order

beginning with the leftmost side of the image as column

one. This initial scan begins with the pixel in row one

and column one, and then continues to move to the adjacent

column on the right. When the scanning process reaches the

last column of the image, it moves one row down and also

resets to the first column and continues until it locates a

black pixel. At that point, the scheme turns the pixels

contained in a three-by-three box adjacent to the located

black pixel to white, beginning with the pixel diagonally

down and to the right of the located black pixel. The

process is illustrated in Figure 4.3 below.

Figure 4.3. Illustration of left to right block
filtering on a magnified illustration of a ridge.

The left to right scan continues until it covers

the entire image. Next, a similar scan is performed across

the image from right to left beginning at the pixel in row

one and the last column. This scan moves to the adjacent

36

column on the left. When the scanning process reaches the

first column of the image, it moves one row down and also

resets to the last column and continues until it locates a

black pixel. Upon detecting a black pixel, the scan stops

and turns the pixels contained in a three-by-three box

adjacent to the located black pixel to white, beginning

with the pixel diagonally down and to the left. Figure 4.4

depicts this process.

Figure 4.4. Illustration of right to left block
filtering on a magnified illustration of a ridge.

The right to left scan continues until all pixels

in the image are covered. Note that these two separate

scans are needed because one scan by itself does not

perform adequately on all regions of the fingerprint. The

different types of curvature within a fingerprint have an

adverse effect during some portion of the scan. Figure 4.5

shows the results of the two separate scans across a sample

fingerprint image.

37

Figure 4.5. Output of filtering in both directions.

Figure 4.5 shows that the left to right scan

works well on ridges that move up and to the right, whereas

the right to left scan works well on ridges that move down

and to the right. In each case, the ridges in the good

areas have been reduced to a width of one pixel.

Therefore, combining the scans in such a way that preserves

only the “good” regions will result in a complete

fingerprint image thinned down to a one-pixel width. As a

result, the remaining steps combine the two scans to

preserve only the “good” regions from each scan.

• Step Three: removal of isolated noise

To begin with, the first step in removing the

unwanted segments commences by performing another pixel-by-

pixel scan across the entire image. A detected black pixel

38

is placed at the center of a seven-by-seven box, and the

entire perimeter of this box is analyzed. At that point,

the contents within the box are considered to be

independent of all ridges in the fingerprint when all

pixels located along the box perimeter are white.

Therefore, the contents within the box are classified as

“isolated noise” and are subsequently turned to white.

Note that the contents within the box can not be classified

as “isolated noise” but instead may belong to a larger

ridge structure when at least one pixel along the perimeter

is black. Figure 4.6 illustrates this difference by

showing two different seven-by-seven boxes. Black pixels

shown in the left box represent an isolated structure

contained entirely within the box. Therefore, these pixels

will be deleted. Note that one of the black pixels shown

in the box on the right touches the perimeter. As a

result, none of the pixel values in this box are altered.

Figure 4.6. Seven-by-seven pixel box for removing

isolated noise.

39

• Step Four: scan combination

Data from the two scans are added element by

element after all potential “isolated noise” contributions

have been removed from the two thinned images. The

resulting combined matrix, however, now has values of zero,

one, and two. A value of two means that the pixel from

each scan was white, while a value of zero indicates the

pixel from each scan was black. Meanwhile, a value of one

means that the pixel from one scan was black while the same

pixel from the other scan was white. As a result, the new

matrix needs to be adjusted to represent a valid binary

image containing only zeros and ones. Specifically, all

zeros and ones are assigned a value of zero (black pixel),

and all twos are assigned a value of one (white pixel).

Note that values equal to one in the combined matrix are

assigned a value of zero in the binary image because one of

the scans produced a black pixel at these locations. This

final adjustment can be accomplished by assigning a value

of one to pixels with values found to be equal to two after

this summation step, while all other values are transformed

into zeros. In doing so, the resulting new matrix has been

converted to zeros and ones and the two scans combined into

one image. Combining the two scans contained in Figure

4.5 after removing the “isolated noise” from each image

produces the image shown in Figure 4.7.

40

Figure 4.7. Combined image from both scans shown in

Figure 4.5 following isolated noise removal

• Step Five: elimination of one pixel from

two-by-two squares of black

Next, a new scan is conducted on the combined

image to detect two-by-two blocks of black pixels which

represent a location where a ridge has not been thinned to

a one-pixel width. It is likely that some of these two-by-

two blocks were created by the combination of the previous

scans. This problem can be compensated for by changing one

pixel within the block from black to white, which reduces

the width at that particular point from two pixels to one.

At the same time, this process needs to be implemented in a

manner that preserves the overall ridge structure. This

operation can be performed by analyzing the pixels touching

each individual black pixel. Note that each black pixel

touches the three other black pixels within the two-by-two

41

block. Therefore, there are only five other pixels that

contain useful information.

Figure 4.8. Surrounding pixels in two-by-two block.

In Figure 4.8, surrounding pixels to the two-by-

two block are shown as gray because they may either be

black or white. For each of the four pixels within the

two-by-two block, the five pixels as outlined in Figure 4.8

are analyzed. In each case, the total number of black

pixels in these five locations is recorded. At this point,

the pixel with the least amount of black pixels surrounding

it is turned from black to white. This pixel is deleted

because it has the least amount of ridge information

touching it, and its deletion will most likely preserve the

overall ridge structure.

• Step Six: removal of unwanted spurs

At this point, the majority of the ridges have

been reduced to a width of one-pixel. Looking at Figure

4.7, however, it should be evident that the overall ridge

structure remains imperfect, due to the presence of short

spurs jutting from several ridges. A magnified sample of

these unwanted spurs is shown in Figure 4.9.

42

Figure 4.9. Unwanted spurs along ridges.

Upon observing these spurs, it becomes apparent

that the end of the spur has the same characteristics as a

ridge termination. Furthermore, note that the point where

the spur connects to the ridge has the same qualities as a

ridge bifurcation. This information is used in removing

extraneous spurs. At this point, detecting terminations

and bifurcations in a thinned image needs to be considered.

One possible approach for this process involves computing

what is referred to as the crossing number for each black

pixel in the thinned image. As described in Maltoni, Maio,

Jain, and Prabhakar (2003), the crossing number is defined

as half the sum of differences between pairs of adjacent

pixels that surround the given black pixel. In general

terms, this computation begins by looking at the eight sets

of adjacent pixels, as illustrated in Figure 4.10.

43

Figure 4.10. Eight sets of adjacent pixels used in

computing crossing number.

Note that the difference between two adjacent

pixels is equal to one when they are not of the same color.

Conversely, this difference is zero when two pixels are of

the same color. This difference is individually computed

for the eight sets of adjacent pixels illustrated in Figure

4.10. Next, the eight differences are added together, and

the resultant sum is divided by two. This value defines

the crossing number for the black pixel at the center of

the three-by-three pixel region. The center pixel

corresponds to a termination minutia when the crossing

number is equal to one. Similarly, the center pixel is the

location of a bifurcation when the crossing number is

greater than or equal to three, and it is an intermediate

ridge point when the crossing number is equal to two.

Figure 4.11 illustrates intra-ridge pixels, termination

minutia, and bifurcation minutia as detected by the

crossing number.

44

Figure 4.11. Visual examples of crossing number. (After:

[Maltoni, Maio, Jain, & Prabhakar, 2003])

Therefore, the crossing number corresponding to

each black pixel contained in the image is computed and

used to delete unwanted spurs. First, the process cycles

through all termination points and begins to trace the

associated ridges. The ridge is determined to be an

unwanted spur if the trace reaches a bifurcation point in

less than twenty pixels. In such a case, the black pixels

that have been traced from the bifurcation to the starting

termination are turned to white, thus deleting the spur.

On the other hand, if the trace length reaches twenty

pixels before arriving at a bifurcation, the ridge is

determined to be a valid ridge structure, and no change is

made to the pixels. Figure 4.12 shows the result of

applying this procedure.

45

Figure 4.12. Impact of removing spurs.

• Step Seven: removal of duplicate horizontal

and duplicate vertical lines

Observe that the thinned image has a better

resemblance of the desired image after removing the

unwanted spurs. Even so, there still may be a few problems

that need to be taken into consideration, such as locations

where a single ridge is represented by two horizontal lines

or two vertical lines, as illustrated in Figure 4.13.

46

Figure 4.13. Duplicate horizontal and vertical lines.

Although these problems do not occur in every

thinned image, they do occur enough to warrant attention.

To remove the duplicate horizontal lines, the image is

first scanned for horizontal lines with a length of five

pixels. Upon locating one of these lines, the five rows

immediately beneath this line are analyzed. If one of

these rows also has a line with a length of five pixels in

the same column indices as the initial line detected, then

it is classified as a duplicate horizontal line.

Therefore, the line of five pixels in the southernmost row

is turned from black to white. Figure 4.14 displays this

process.

47

Figure 4.14. Deleting duplicate horizontal lines.

Once all duplicate horizontal lines have been

accounted for, the resulting spurs can be deleted by

applying the same process as before. A different procedure

is necessary, however, to deal with duplicate vertical

lines. Note that the duplicate vertical lines are longer

segments that only connect in one place, while the

duplicate horizontal lines are short segments that connect

to the ridge in two places. For conceptual purposes, they

can be treated as very lengthy spurs. Although they could

be removed by simply increasing the maximum allowable trace

length in the previous steps, doing so is not a recommended

solution as it may result in unwillingly deleting a correct

ridge that has a relatively short distance between a

termination and bifurcation. This problem is addressed

differently, as follows. The method begins by searching

the thinned image for vertical lines with a length of ten

pixels. When one such line is located, the same rows in

the three columns to the right are analyzed. A duplicate

vertical line exists when one of these columns also has a

line with a length of ten pixels in the same rows. At this

point, the two vertical lines are traced downward. The

48

trace continues until the ridge ends or a maximum trace

length of forty pixels is reached, whichever comes first.

As the traces are conducted, the total trace length is

recorded for each segment. After the traces conclude, the

total trace lengths for the two segments are compared.

Since the vertical line that is part of the correct ridge

structure does not come to a sudden end, it should reach

the maximum trace length. Conversely, the vertical line

that is the unwanted segment will reach an end before

reaching the maximum trace length. Thus, the segment that

has the shorter trace length is determined to be the

unwanted spur and is subsequently deleted. Figure 4.15

displays this deletion process.

Figure 4.15. Deleting duplicate vertical lines.

All the steps in the block thinning method have

been executed once this phase is complete. The final

thinned image is shown in Figure 4.16.

49

Figure 4.16. Thinned image from block filtering.

Note that the block filtering does an effective

job of thinning the majority of the original image even

though there are a few imperfect areas within the thinned

image. For example, some bifurcations in the original

image appear as terminations in the thinned image.

b. Central Line

Central line thinning involves reducing the

individual ridges to a width of one pixel at their central

lines. The rule-based algorithm developed for character

recognition by Ahmed and Ward (2002) can be applied to a

fingerprint image. This scheme was studied because of its

ability to effectively thin ridges. One significant

advantage of this method is that it produces the same

50

thinned symbols regardless of rotation. This quality has

specific appeal to a fingerprint recognition system, where

it is likely the rotational orientation will be slightly

different in successive login attempts. Additionally, it

is stated that their proposed method preserves the topology

and does not produce any discontinuity. These qualities

are also important for an effective fingerprint thinning

algorithm.

This thinning method is iterative in nature. At

each iteration, the algorithm deletes those points that lie

on the outer boundaries of the ridges, so long as the width

of the ridge is greater than one pixel. The pixel will not

be deleted if the process results in a disconnected graph

[Ahmed & Ward, 2002]. The deletion process begins by

scanning the image for black pixels. For each pixel, a

check is performed to discover if it belongs to two pixels

width in the vertical or horizontal directions. This step

is necessary to ensure the pixels on the extremities of

zigzag diagonal lines are not deleted. Figure 4.17

outlines this check for the vertical direction, while

Figure 4.18 shows the check for the horizontal direction.

The twenty-one rules mentioned at the end of these checks

are used to determine which scenario, if any, applies to

the associated three pixel-by-three pixel neighborhood.

The first twenty rules were originally proposed by Ahmed

and Ward (2002), while the twenty-first rule was introduced

by Patil, Suralkar, and Sheikh (2005) for specific

application to fingerprint images. This rule removes

singular pixels, which are of interest in character

51

recognition but have no importance in fingerprint images.

The twenty-one rules are shown in Figure 4.19 and will be

discussed shortly.

Figure 4.17. Two pixels width in vertical direction

check. (After: [Ahmed & Ward, 2002])

52

Figure 4.18. Two pixels width in horizontal direction

check. (After: [Ahmed & Ward, 2002])

The twenty-one thinning rules are immediately

applied if the pixel does not belong to a two pixels wide

block in the vertical or horizontal direction. When a

neighborhood satisfies one of the rules on the left side of

the arrow, the middle pixel is turned to white, as

indicated by the resulting neighborhood to the right of the

arrow.

53

Figure 4.19. Thinning rules. (After: [Ahmed & Ward,

2002])

As stated previously, black pixels are denoted by

a zero while white pixels are represented as a one. The

X’s are used to symbolize that the pixel can either be

black or white. In other words, it does not matter what

the value of these pixels are when the rules are applied.

If none of the rules are satisfied, the middle pixel

remains unchanged. The iteration continues, and the

thinning progresses, until no changes occur from one

54

iteration to the next. Once the iteration is complete,

Patil, Suralkar, and Sheikh (2005) discovered that the

process does not completely thin diagonal lines to a width

of one pixel. As a result, they proposed applying an

additional set of rules to follow the thinning process

proposed by Ahmed and Ward (2002), designed specifically

for diagonal lines. In applying these rules, the

continuity of the ridges does not get changed, and the

original structure and angle of the ridges remains the

same. The diagonal rules are depicted in Figure 4.20.

Figure 4.20. Diagonal thinning rules. (After: [Patil,

Suralkar, & Sheikh, 2005])

After implementing the diagonal rules, the ridges

of the fingerprint have been thinned to a one-pixel width

at their central lines. Figure 4.21 displays the

transformation of the black and white image to the final

thinned image through the various iterations.

55

Figure 4.21. The thinning process to central lines.

In this visual example, the initial thinning is

complete following the fourth iteration. The fifth

iteration, however, is still conducted. Upon determining

the fifth iteration produces no changes to the results from

56

the fourth iteration, the 21-rule thinning process stops,

and the diagonal thinning rules are applied to produce the

final thinned image.

3. Final Noise Removal

Following the thinning process, a final stage of noise

removal is conducted to eliminate noise produced from the

binarization and thinning processes. This stage focuses on

removing the short island segments near the outer

boundaries of the image which were produced during the

binarization phase. Such segments need to be removed

because they do not represent the true ridge structure of

the original fingerprint. The process for deleting these

segments is very similar to the process used in deleting

the spurs produced from thinning by the block filter. It

begins by detecting the terminations in the final thinned

image. Starting at each termination, the corresponding

ridge is traced one pixel at a time. Next, the segment is

classified as a short island segment and is deleted if

another termination is reached before the maximum trace

length of seventeen pixels is reached. Conversely, the

segment is said to be part of a complete ridge and not

altered when the maximum trace length is reached without

encountering another termination. Figure 4.22 shows the

results of this process on an image that has been thinned

by the central line technique.

57

Figure 4.22. Impact of deleting short island segments.

B. MINUTIAE EXTRACTION

The minutiae information can be extracted and stored

after the image pre-processing is complete. This

information consists of the following for each minutia:

• Location within the image

• Orientation angle

• Type (termination or bifurcation)

As described earlier, the crossing number is used

again to locate the terminations and bifurcations within

the final thinned image. In this process, the locations

where the ridges end at the outer boundaries of the image

are classified as terminations. In the true sense,

however, these locations are not unique termination

minutiae. Instead, they only appear as terminations

because the dimensions of the image force each ridge to

come to and end. Knowing this, these locations should not

be recorded as minutiae within the fingerprint. One way to

58

eliminate such locations involves creating an ellipse to

only select minutiae points inside the fingerprint image.

The center of the ellipse is established by locating the

minimum and maximum rows and columns that contain a ridge

pixel, then calculating the row and column that lie halfway

between these extremes. The major axis of this ellipse was

empirically selected as 94% of the difference between the

minimum and maximum rows containing a ridge pixel, whereas

the minor axis was empirically selected as 86% of the

difference between the minimum and maximum columns with a

ridge pixel. Figure 4.23 shows the ellipse generated for a

certain fingerprint.

Figure 4.23. Ellipse generated to reject ridge endings

along the boundaries of an image.

59

Using this method, any termination or bifurcation that

lies outside of the ellipse gets ignored. After this step

is complete, the angles of the remaining minutiae are

calculated. A termination angle is the angle between the

horizontal and the direction of the ridge, while a

bifurcation angle is the angle between the horizontal and

the direction of the valley ending between the bifurcation.

Figure 4.24 provides a visual description of these

definitions.

Figure 4.24. Definition of minutiae angles.

To compute the termination angles, the row and column

indices for each termination are first recorded. Beginning

at each termination, the corresponding ridge is traced

backwards by five pixels, and the resulting row and column

indices are stored. Care must be taken to ensure the angle

is calculated correctly. Figure 4.25 summarizes the rules

developed by the author in calculating each angle.

60

Figure 4.25. Rules for calculating termination angles.

These rules allow for 360° coverage while using the

inverse tangent function. The process for computing the

bifurcation angles uses the same set of rules in a slightly

61

different manner. In particular, it takes advantage of

what is known as termination/bifurcation duality [Maltoni,

Maio, Jain, & Prabhakar, 2003]. This property says that a

termination in a black and white image corresponds to a

bifurcation in its negative image. Similarly, a

bifurcation in the black and white image is in the same

position as a termination in the negative image. Figure

4.26 shows this relationship.

Figure 4.26. Termination/bifurcation duality. (After:

[Maltoni, Maio, Jain, & Prabhakar, 2003])

As a result, the original black and white image is

inverted to obtain the bifurcation angles. The negative

image is then thinned using the methods described

previously. At this point, the terminations in the thinned

image are detected using the crossing number once again.

The angle of each termination is then computed by applying

the rules shown in Figure 4.25. From here, positions of

the bifurcations in the original image are compared to the

62

positions of the terminations in the inverted image. Each

bifurcation angle is determined by locating the termination

in the inverted image that lies nearest the position of the

bifurcation. The angle of this termination is then

assigned as the angle of the corresponding bifurcation.

Note that the angle is assigned an arbitrary angle of 0°

when no terminations in the inverted image lie within a

distance of 100 pixels of a bifurcation. This step was

added to ensure an angle is assigned to every bifurcation,

regardless of unforeseen errors.

A final step is applied in an effort to remove

unwanted termination minutiae along the outer boundaries of

the image. If the input fingerprint is slightly rotated,

some terminations may lie within the previously created

ellipse. In such a case, these minutiae will not be

deleted, and further processing is applied to remove them

as these points are not true ridge terminations. Note that

terminations residing within a fingerprint are surrounded

by other ridges, while terminations along the outer

boundaries are not completely surrounded. Thus, the angles

of the terminations are used to conduct a search for nearby

ridges. A horizontal search is performed when the angle is

between 45° and 135° or between 225° and 315°. Here, the

twenty columns to the immediate right and left of the

termination are examined. If a ridge is not detected in

one of the directions, the termination is deleted because

it lies on the boundary of the image. In a similar manner,

a vertical search is conducted when the termination angle

is between 135° and 225° or between 315° and 45°. This

search looks at the twenty rows immediately above and below

the termination. If either direction does not locate a

63

ridge, the termination under examination is deleted.

Otherwise, the termination is not modified when the search

locates a ridge in both directions.

Following this step, the position and angle of the

final set of minutiae is known. For visual purposes, this

data is plotted to observe the detection ability of the

various thinning methods. In the plot, terminations are

denoted by a square while bifurcations are displayed as

diamonds. Also, the angle of each minutia is shown by a

short line segment jutting out of the squares and diamonds.

Figure 4.27 displays the minutiae position and orientation

produced by block filter thinning and central line

thinning. Figure 4.28 shows the minutiae data from block

filter thinning superimposed on the original fingerprint

image, and Figure 4.29 displays the same for the central

line thinning results.

Figure 4.27. Display of minutiae detected by block filter

and central line thinning.

64

Figure 4.28. Magnified display of minutiae detected by

block filter thinning superimposed on original fingerprint.
Terminations denoted by a square, bifurcations denoted by a

diamond.

65

Figure 4.29. Magnified display of minutiae detected by

central line thinning superimposed on original fingerprint.
Terminations denoted by a square, bifurcations denoted by a

diamond.

66

Both thinning methods appear to do an adequate job at

locating the minutiae. The difference in detected minutiae

shown in Figure 4.28 and 4.29 arises simply because the two

thinning methods produce slightly different results. An

error that occurs in the thinning process leads to the

minutiae extraction process detecting minutiae that do not

correspond with the original ridge structure. Although the

block filtering produces some spurious minutiae, the

majority of the detected minutiae are accurate and near the

correct location. Meanwhile, the central line thinning

does an excellent job of maintaining the ridge integrity of

the original image. The performance of each technique will

be examined in the coming chapters.

C. CONCLUSION

Image pre-processing is the most critical step for

reliable minutiae detection. Accurate estimation of the

overall ridge structure in the final thinned image is an

essential step needed to ensure accurate estimation of the

fingerprint minutiae. Errors in the thinning process

result in errors in the minutiae extraction process, making

the fingerprint identification step essentially worthless

when such errors occur. The following chapter discusses

minutiae data matching issues.

67

V. MINUTIAE MATCHING

The next essential step in the fingerprint recognition

process is the comparison of minutiae data. Much like the

minutiae extraction steps, reliable matching is necessary

for an effective system. This chapter discusses a matching

process used in comparing minutiae data.

A. DATA FORMAT

First, the data extracted in the previous steps must

be stored in a consistent format to ensure proper

comparisons are conducted. In the approach considered in

this thesis, minutiae data from a single fingerprint is

stored in a matrix format, where the number of rows

represents the number of minutiae points. The number of

columns in this matrix is fixed at a value of four. The

first column indicates the row index of each minutia, and

the second column indicates the column index of the

minutiae in the fingerprint image. The third column

provides the angle orientation of the minutiae, and the

fourth column indicates the type of minutiae, where values

of one or two are used to indicate a termination or

bifurcation, respectively. Table 5.1 provides a sample of

this matrix of data extracted for each fingerprint.

68

Table 5.1. Sample matrix of minutiae data.

B. MATCHING PROCESS

The matching process involves comparing one set of

minutiae data to another set. In most cases, this process

compares an input data set to a previously stored data set

with a known identity, referred to as a template. The

template is created during the enrollment process, when a

user presents a finger for the system to collect the data

from. This information is then stored as the defining

characteristics for that particular user.

The method introduced in the following steps is based

on the matching process presented by Luo, Tian, and Wu

(2000). This process begins by creating a matrix, called

rotatevalues in the code included in Appendix A, of the

orientation angle difference between each template

minutiae, Tk (1≤k≤NT), and each input minutiae, Im (1≤m≤NI).

Here, NT and NI represent the total number of minutiae in

the template and input sets, respectively. The value at

rotatevalues(k,m) represents the difference between the

orientation angles of Tk and Im. Tk and Im represent the

extracted data in all the columns of row k and row m in the

template and input matrices, respectively.

69

Next, template and input minutiae are selected as

reference points for their respective data sets. This

process is performed for each possible combination of

template and input minutiae points. It begins by selecting

the first minutiae point in the template matrix, T1, along

with the first minutiae point in the input matrix, I1. Once

the matching procedure for these reference points is

complete, it performs the same process using T1 and I2 as

reference points. After all combinations of Tk and Tm have

been used as reference points, the matching process

concludes.

In each case, the reference points are used to convert

the remaining data points to polar coordinates. Equation

5.1 shows the procedure followed for converting the

template minutiae from row and column indices to polar

coordinates:

() ()

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

−+−

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
−

T
ref

T
k

T
ref

T
k

T
ref

T
k

T
ref

T
k

T
ref

T
k

T
k

T
k

T
k

colcol
rowrow

colcolrowrow
r

θθ
θ

φ 1

22

tan . (5.1)

Converting to polar coordinates allows for an

effective match process to be conducted regardless of any

rotational or translational displacement between the

template and input images. The variable T
kr represents the

radial distance, T
kφ represents the radial angle, and T

kθ

represents the orientation of the kth minutia, all with

70

respect to the reference minutiae. Also, the variables T
krow

and T
kcol refer to the row and column indices of the kth

minutia in the template matrix, while T
refrow and T

refcol refer

to the indices of the reference minutia currently being

used for the template matrix. Equation 5.2 provides the

polar coordinate transformation for the input minutiae:

() ()

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

−+−

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
−

I
ref

I
m

I
ref

I
m

I
ref

I
m

I
ref

I
m

I
ref

I
m

I
m

I
m

I
m

mkesrotatevalu
colcol
rowrow

colcolrowrow
r

θθ
θ

φ),(tan 1

22

. (5.2)

Instead of comparing row and column indices, the

comparison is now based on the relative position of the

minutiae with regards to the reference minutiae. The

relative positions of the minutiae remain the same even as

the absolute position of the fingerprint image changes. As

a result, converting the data to polar coordinates in the

matching process creates a more robust system since the

alignment of an input image is likely to be different than

the alignment of the template image.

Following the conversion to polar coordinates, the

resulting template and input data sets are sent through a

matching process, which compares the polar data of each

input minutiae to each template minutiae. For each

possible combination, the difference between the template

and input data is computed for the radial distance, radial

angle, and orientation angle. Two minutiae are determined

to match if all of the following criteria are met:

71

• The absolute radial distance difference is less

than a tolerance of three pixels.

• The absolute radial angle difference is less than

a tolerance of five degrees.

• The absolute orientation angle difference is less

than a tolerance of ten degrees.

• The two minutiae are the same type.

Throughout this process, a counter keeps track of the

total number of minutiae that are matched. Once a minutia

in the template is matched to a minutia in the input, its

type is assigned a value of three to prevent it from being

matched to more than one minutia. Next, a matching score

representing the similarity between the datasets is

calculated for each combination of reference points using

the total number of minutiae matched in each case.

Equation 5.3 shows the formula for calculating the matching

score when Tk and Im are being used as reference minutiae:

NI)(NT,max

minutiae matching#),(=mkorematchingsc , (5.3)

where NT and NI represent the total number of minutiae in

the template and input matrices, respectively. The

denominator is assigned the maximum value between NT and

NI. By this definition, the matching score takes on a

value between zero and one. A matching score of one

indicates the data matches perfectly, whereas a matching

score of zero occurs when there are no matching minutiae.

The denominator is defined in this manner to thwart efforts

of an imposter attempting to gain access by preventing

someone from simply creating a fraudulent input consisting

of an incredibly large number of minutiae in hopes of

72

randomly matching only a few of them. Since the number of

matching minutiae can never exceed the minimum value

between NT and NI, dividing this number by a large NI

number would result in a low matching score, even if a lot

of minutiae matches are formed.

Matching scores have been calculated for every

possible combination of reference points and stored in the

matchingscore matrix. The final matching score between the

template and input datasets is selected as the maximum

value in the matchingscore matrix. Note that this maximum

value represents the best possible alignment between the

two sets of data, and the input is considered to come from

the same finger as that represented in the template image

when the matching score is greater than a previously user-

defined threshold value. The input image is found to come

from a different fingerprint than that represented in the

current template when the matching score is below the

threshold value.

C. CONCLUSION

The polar coordinate system discussed in this section

allows matching to be performed regardless of the template

and input image orientation. This characteristic is a

significant advantage because it allows for slight

variations in finger positions during successive

recognition attempts as the input image does not have to be

aligned exactly as it was during the enrollment process.

The following chapter presents experimental results of the

complete fingerprint recognition system.

73

VI. EXPERIMENTAL RESULTS

This chapter presents the experimental procedures used

in testing the developed fingerprint recognition system.

It also provides the results obtained from the various

tests and discusses the thinning method that produces the

best results.

A. SYNTHETIC DATABASE GENERATION

As stated previously, the SFINGE software was used to

develop fingerprints free of sensor noise. A total of

sixty base images were created for the database. These

images covered the five major classes of fingerprints

outlined in Figure 3.2. Additionally, the width of the

ridges was not held constant. This allowed the database to

more accurately represent a sample of fingerprints from the

general population. In order to conduct an efficient test,

a file naming convention was developed for the images. The

base images were assigned a name in the format

‘s00##_1.jpg’, where ## represents the image number ranging

from 00 to 59.

Next, a series of transformations was applied to

generate new images of the same fingerprint using these

base images. These transformations included horizontal

shifts to the left and right, vertical shifts up and down,

and clockwise and counterclockwise rotations. The

horizontal and vertical shifts were on the order of forty

to eighty pixels, and the rotations ranged from five to

fifteen degrees. Table 6.1 outlines the transformations

and their corresponding filename convention.

74

Table 6.1. Filename convention for transformations.

All transformations were applied to each original

image. Starting with sixty original images, this process

produced seven total impressions for each fingerprint.

Thus, the final database consisted of 420 synthetically

generated fingerprints.

B. TEMPLATE CREATION

Using the original images, two templates were created

for each of the sixty fingerprints. This was performed by

implementing all the steps outlined in Chapter IV on each

fingerprint image. Since the fingerprints were sent

through the minutiae extraction process, the templates were

simply a matrix of data organized in the same format as

that shown in Table 5.1. One set of templates used the

central line thinning method and was saved using the

filename ‘s00##_t.mat’, while the other templates were

generated using the block filter thinning method and given

the name ‘s00##_t2.mat’. By creating separate templates

for the two thinning processes, a performance evaluation

between the two methods could be conducted.

C. SIMULATION

Simulations were conducted to determine numerical

values of the False Non-match Rate (FNMR) and False Match

75

Rate (FMR) for various thresholds. Equation 6.1 expresses

the formula used for calculating the FNMR at different

threshold values:

Attempts Enrollee #

matches-Non False#
=FNMR . (6.1)

The experiment matched the seven images of the same

fingerprint to the corresponding template for the same

fingerprint. Therefore, each match that took place was

considered to be an enrollee attempt to access the system.

With seven impressions of sixty fingerprints, there were a

total of 420 enrollee attempts. A False Non-match was

recorded when the matching score between an enrollee and

its template was less than the established threshold. The

procedure for calculating the FMR was slightly different.

Equation 6.2 presents the formula used in calculating the

FMR:

AttemptsImposter #

Matches False #
=FMR . (6.2)

The imposter attempts were implemented by matching the

seven images of one fingerprint with all the templates from

the 59 other fingerprints. This procedure simulated an

imposter attempt as the input images did not have a

corresponding template in the database. Without a

template, the imposter should not be allowed access. This

process was applied for the seven impressions from all 60

different fingerprints. In each case, the seven

impressions were matched with the other 59 templates,

resulting in 7 x 59 x 60 = 24780 imposter attempts. A

false match was recorded for each imposter attempt when the

matching score was greater than the established threshold.

The final FMR was computed by dividing the total number of

False Matches by the total number of imposter attempts.

76

Figure 6.1 summarizes the matching process for computing

the FNMR, while Figure 6.2 shows the process for the FMR.

Figure 6.1. Matching process for computing the FNMR.

77

Figure 6.2. Matching process for computing the FMR.

FNMR and FMR matching processes were performed for the

two methods of thinning. In each case, the matching scores

were compared against various threshold values to obtain

the performance data for each thinning method. The

threshold was adjusted from 0.05 to 0.95 in increments of

78

0.05. Table 6.2 shows the results obtained for the central

line thinning method.

Table 6.2. Central line thinning FNMR/FMR data.

Results show that the central line thinning scheme

leads to very good recognition rates for threshold values

below 0.65, and that the FNMR begins to increase to

unacceptable values when the threshold is greater than

0.65. For example, at a threshold of 0.75, the FNMR is

0.2542, meaning that an accepted enrollee will be denied

access to the system 25.42% of the time. Although the same

user may be granted access on his next attempt, this

threshold may create too much user inconvenience in most

applications. Meanwhile, the FMR only reaches unacceptable

values at threshold levels below 0.15. Thus, a system

threshold of 0.55 would be adequate in most applications,

79

leading to FNMR and FMR below 1% and essentially 0%,

respectively. A more secure application may require

increasing the threshold to around 0.65 to further reduce

the possibility of a False Match occurring. Next, Table

6.3 provides the experimental results obtained with the

block filter thinning technique.

Table 6.3. Block filter thinning FNMR/FMR data.

Results show the block filter thinning method develops

problems in recognizing authorized enrollees. Note that

the FNMR does not reach 10% until the threshold has been

reduced to 0.10. At this threshold, the FMR has a value of

1%. Thus, there does not appear to be an acceptable

threshold for a system that provides both user convenience

and security from unauthorized personnel. Upon further

examination, the False Non-matches that occur for

80

thresholds below 0.55 were produced solely by the rotated

input images. For horizontal and vertical displacements,

the system was still able to match authorized users.

Therefore, another set of data was computed for thinning by

block filter. This time, the input images with a

rotational transformation were not used. Instead, only the

base image (‘s00##_1.jpg’), the image shifted left

(‘s00##_2.jpg’), the image shifted right (‘s00##_3.jpg’),

the image shifted up (‘s00##_4.jpg’), and the image shifted

down (‘s00##_5.jpg’) were used in the matching process.

This procedure produced the data given in Table 6.4.

Table 6.4. Block filter thinning FNMR/FMR data using no

rotated input images.

As Table 6.4 confirms, the block filter thinning

technique produces good data when the input image is not

81

rotated. When this is the case, a threshold around 0.55

would be effective for most applications. Even so,

limiting input images to no rotation is difficult to employ

in practice. Therefore, the central line thinning process

is more appealing for a practical application as it is

rotational invariant.

D. CONCLUSION

Results show that using the central line thinning

method leads to good recognition rates and allows the

recognition system to handle rotated images without

performance degradation. The central line thinning

method’s main strength lies in its ability to thin ridges

in the same manner regardless of rotational orientation,

making it easier to effectively process all types of input

images. Results also show that the block filter thinning

works well for horizontal and vertical displacements, but

degrades significantly when dealing with rotated images. As

a result, the central line thinning method is the better

choice for thinning the ridges to a one-pixel width.

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Many steps are required for a reliable fingerprint

recognition system. The first step involves pre-processing

the original fingerprint image. This includes image

binarization, ridge thinning, and noise removal. After

this pre-processing phase is complete, the minutiae

extraction step is executed, where the minutiae data is

collected and organized into a single matrix. From here,

the matrix of input data is matched with the template data

to determine if the input comes from the same finger as one

of the templates. Since all steps are necessary for an

effective system, no one step is more important than

another. Instead, all steps should be viewed as critical

steps for a reliable and effective system.

B. RECOMMENDATIONS

Possible recommendations for future work include

developing code to handle fingerprints containing a large

amount of noise. This extension would be necessary to

apply this system to commonly collected fingerprints, as

most fingerprint images captured from a sensor contain some

degree of sensor noise. In such a case, an additional

noise removal step needs to be applied before the image is

sent to the binarization step. This extension project

would require focusing on transforming a noisy fingerprint

image to a black and white image while preserving the

overall ridge structure. Providing this de-noising phase

can be implemented successfully, the remaining steps of the

fingerprint recognition system can then be applied as they

were in this research study. Furthermore, a more advanced

84

area of future work could involve incorporating this system

with another biometric in developing a multimodal system.

85

APPENDIX A. MATLAB CODE

%%
%%
%%

• maincode.m

%---
% When this code is executed, the data for FNMR and FMR is
% generated for the two thinning methods
% ---
% Output: Matrices of data containing matching scores
%
% Functions Used: get_minutiae_data.m, minutiae_match.m
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

clear
falseNM_matchscores=zeros(60,7);
falseNM_matchscores2=zeros(60,7);

%%
% Compute False NonMatches via central thinning

tic
for kt=0:59
 kt

 if kt < 10 %put zero in front of single character numbers
 a1=['s000',num2str(kt),'_t.mat'];
 else
 a1=['s00',num2str(kt),'_t.mat'];
 end

 a1t=load(a1);
 at=a1t.templatedata;

 for ki=1:7

 a2=[a1(1:6),num2str(ki),'.bmp']; %a1(1:6)=s00##_
 ai=get_minutiae_data(a2,1);

 input_data=ai;

86

 template_data=at;

 ismatch=minutiae_match(input_data,template_data);
 falseNM_matchscores(kt+1,ki)=ismatch; %kt+1 because kt starts counting at zero

 end
end
toc %Elapsed time is 2521.245433 seconds

%%
% Compute False NonMatches via boundary block thinning

tic
for kt=0:59
 kt

 if kt < 10 %put zero in front of single character numbers
 a1=['s000',num2str(kt),'_t2.mat'];
 else
 a1=['s00',num2str(kt),'_t2.mat'];
 end

 a1t=load(a1);
 at=a1t.templatedata;

 for ki=1:7

 a2=[a1(1:6),num2str(ki),'.bmp']; %a1(1:6)=s00##_
 ai=get_minutiae_data(a2,2);

 input_data=ai;
 template_data=at;

 ismatch=minutiae_match(input_data,template_data);
 falseNM_matchscores2(kt+1,ki)=ismatch; %kt+1 because kt starts counting at zero

 end
end
toc

%%%
%%%
% Compute False Matches via central thinning
tic
falseM_matchscores=zeros(60,59,7);

87

for ka=0:59
 ka
 if ka < 10 %put zero in front of single character numbers
 a1=['s000',num2str(ka),'_'];
 else
 a1=['s00',num2str(ka),'_'];
 end

 for kb=1:7

 a1i=[a1,num2str(kb),'.bmp'];
 ai=get_minutiae_data(a1i,1);
 input_data=ai;
 comparecounter=0;

 for kc=0:59 %cycle through templates

 if kc < 10 %put zero in front of single character numbers
 a1t=['s000',num2str(kc),'_t.mat'];
 else
 a1t=['s00',num2str(kc),'_t.mat'];
 end

 if kc~=ka %don't match input to its correct template
 comparecounter=comparecounter+1;
 a1td=load(a1t);
 at=a1td.templatedata;
 template_data=at;

 ismatch=minutiae_match(input_data,template_data);
 falseM_matchscores(ka+1,comparecounter,kb)=ismatch;
 end
 end

 end
end

toc

%%
% Compute False Matches via boundary block thinning
tic
falseM_matchscores2=zeros(60,59,7);

for ka=0:59

88

 ka
 if ka < 10 %put zero in front of single character numbers
 a1=['s000',num2str(ka),'_'];
 else
 a1=['s00',num2str(ka),'_'];
 end

 for kb=1:7

 a1i=[a1,num2str(kb),'.bmp'];
 ai=get_minutiae_data(a1i,2);
 input_data=ai;
 comparecounter=0;

 for kc=0:59 %cycle through templates

 if kc < 10 %put zero in front of single character numbers
 a1t=['s000',num2str(kc),'_t2.mat'];
 else
 a1t=['s00',num2str(kc),'_t2.mat'];
 end

 if kc~=ka %don't match input to its correct template
 comparecounter=comparecounter+1;
 a1td=load(a1t);
 at=a1td.templatedata;
 template_data=at;

 ismatch=minutiae_match(input_data,template_data);
 falseM_matchscores2(ka+1,comparecounter,kb)=ismatch;
 end
 end

 end
end

toc

save('falseNMdata.mat','falseNM_matchscores')
save('falseNMdata2.mat','falseNM_matchscores2')
save('falseMdata.mat','falseM_matchscores')
save('falseMdata2.mat','falseM_matchscores2')

89

%%
%%
%%

• thin_blockfilter.m

function bwthin=thin_blockfilter(xbw)

%---
% This is the main code for thinning ridges via the block filter method
% ---
% Input: Black and White input image in matrix format
%
% Output: Thinned image
%
% Functions Used: removeblock4.m, detect_term_bif.m, linetrace.m
% removehorizduplicate.m, removevertduplicate.m
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

%This function attempts to thin the black and white input image to a
%1-pixel width

[row,col]=size(xbw);

%%%%%figure(1),imshow(xbw)

%%%
% erode original image

g=[1,1;1,1];
z=imdilate(xbw,g);
%%%%%figure(2),imshow(z)
xbw=z;

%%%
%put border of white around image
xbw(1:5,:)=1;
xbw(row-4:row,:)=1;
xbw(:,1:5)=1;
xbw(:,col-4:col)=1;

a=xbw;
b=xbw;

90

% Left to Right
for k=1:row
 for m=1:col

 if a(k,m)==0 %Black pixel
 a(k+1:k+3,m+1:m+3)=1;
 end

 end
end

a=a(1:row,1:col); %Ensure a is the same size as original image

%Right to Left
for k=1:row
 for m=col:-1:1

 if b(k,m)==0

 if m>4
 b(k+1:k+3,m-3:m-1)=1;
 end

 end

 end
end

b=b(1:row,1:col);

%%%%%figure(4),imshow(a)
%%%%%figure(5),imshow(b)
%%%%%figure(9),imshow((a+b)/2)

d=((a+b)/2);
d=im2bw(d,0.95);
d=d-0;

%remove isolated noise

for k=1+3:row-3
 for m=1+3:col-3

 %if entire perimeter of 7x7 box is white, the contents within the box are unwanted
 %noise

91

 if a(k,m)==0
 if sum(a(k-3:k+3,m-3))==7 && sum(a(k-3:k+3,m+3))==7 && …

sum(a(k-3,m-3:m+3))==7 && sum(a(k+3,m-3:m+3))==7

 a(k-3:k+3,m-3:m+3)=1;
 end
 end

 if b(k,m)==0
 if sum(b(k-3:k+3,m-3))==7 && sum(b(k-3:k+3,m+3))==7 && …

sum(b(k-3,m-3:m+3))==7 && sum(b(k+3,m-3:m+3))==7

 b(k-3:k+3,m-3:m+3)=1;
 end
 end

 end
end

%%%%%figure(6),imshow(a)
%%%%%figure(7),imshow(b)

c=(a+b)/2;
c=im2bw(c,0.95);
c=c-0;
%%%%%figure(8),imshow(c)

%%%
% scan image for 2x2 blocks of black, then remove one pixel from block

c2=removeblock4(d);

%%%
% detect end of lines and bifurcations using crossing number

[lineends,bifur]=detect_term_bif(c2);

%%%%%figure(10),imshow(lineends)
%%%%%figure(13),imshow(bifur)

%%%
% remove unwanted short line segments

f1=linetrace(c2,lineends,bifur,20);
figure(14),imshow(f1)

92

%%%
%Remove duplicate horizontal lines

f2=removehorizduplicate(f1);

%%%
%Remove duplicate vertical lines

f2a=removevertduplicate(f2);
%%%%%figure(15),imshow(f2a)

[lineends2,bifur2]=detect_term_bif(f2a);

%%%
% remove unwanted line segments left from duplicate horizontal lines

f3=linetrace(f2a,lineends2,bifur2,20);
%%%%%figure(16),imshow(f3)

bwthin=f3;

%%
%%
%%

• removeblock4.m

function y=removeblock4(x)

%---
% This function deletes one pixel from a two-by-two square of black
% pixels after initial block filter thinning process
% ---
% Input: Initial thinned image, in matrix form
%
% Output: Thinned image, free of two-by-two squares of black pixels
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

[row,col]=size(x);

for k=3:row-2
 for m=3:col-2

93

 blocksum=x(k,m)+x(k,m+1)+x(k+1,m+1)+x(k+1,m);

 %blocksum = 0 when there is a square of 4 black pixels

 if blocksum == 0

 % 1 2
 % 4 3

 %compute number of black pixels adjacent to outside of each
 %pixel in block

 touch1= 5 - sum(x(k-1:k+1,m-1))+sum(x(k-1,m:m+1));
 touch2= 5 - sum(x(k-1,m:m+2))+sum(x(k:k+1,m+2));
 touch3= 5 - sum(x(k:k+2,m+2))+sum(x(k+2,m:m+1));
 touch4= 5 - sum(x(k:k+2,m-1))+sum(x(k+2,m:m+1));

 touchvec=[touch1,touch2,touch3,touch4];
 touchvecmin=min(touchvec);
 touchvecmin_index=find(touchvec == touchvecmin);

 %Determine which pixel has the least amount of black pixels
 %next to it, then erase it

 erasepixel=touchvecmin_index(1);

 if erasepixel == 1
 x(k,m)=1;
 elseif erasepixel == 2
 x(k,m+1)=1;
 elseif erasepixel == 3
 x(k+1,m+1)=1;
 elseif erasepixel == 4
 x(k+1,m)=1;
 end

 end
 end
end

y=x;

94

%%
%%
%%

• detect_term_bif.m

function [y_term,y_bif]=detect_term_bif(x)

%---
% This function detects terminations and bifurcations in a thinned image
% ---
% Input: Thinned image, in matrix form
%
% Output: y_term - matrix of data of same size as thinned image, with zeros
% at locations of terminations
% y_bif - matrix of data of same size as thinned image, with zeros
% at locations of bifurcations
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

[row,col]=size(x);

y_term=ones(row,col);
y_bif=ones(row,col);
crossnum=zeros(row,col);

for k=2:row-1
 for m=2:col-1

 if x(k,m)==0
 crossnum(k,m)=(abs(x(k-1,m-1)-x(k-1,m))+abs(x(k-1,m)-x(k-1,m+1))...
 +abs(x(k-1,m+1)-x(k,m+1))+abs(x(k,m+1)-x(k+1,m+1))...
 +abs(x(k+1,m+1)-x(k+1,m))+abs(x(k+1,m)-x(k+1,m-1))...
 +abs(x(k+1,m-1)-x(k,m-1))+abs(x(k,m-1)-x(k-1,m-1)))/2;

 if crossnum(k,m)==1
 y_term(k,m)=0;

 elseif crossnum(k,m)>=3;
 y_bif(k,m)=0;
 end

 end

95

 end
end

%%
%%
%%

• linetrace.m

function y=linetrace(x,lineend,bif,tracedist)

%---
% This function traces lines to remove short spurs and short island segments
% ---
% Input: x - thinned image
% lineend - matrix of data of same size as thinned image, containing
% zeros at locations where traces will commence (usually
% terminations)
% bif - matrix of data of same size as thinned image, containing zeros
% at locations where traces will end (bifurcations when removing
% spurs, terminations when removing short islands)
% tracedist - maximum allowable trace length
%
% Output: Thinned image with unwanted segments removed
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

[row,col]=size(x);
r=2;
c=2;
rnew=0;
cnew=0;
rold=0;
cold=0;
rtotal=[];
ctotal=[];
counter=0;
checkbif=1;

linelength=1;

for k=1:row
 for m=1:col

96

 if lineend(k,m)==0

 linelength=1;
 r=k;
 c=m;
 rtotal=[];
 ctotal=[];
 checkbif=1;
 singlepoint=0;

 while (linelength < tracedist) && (checkbif==1) && (r>1) && …

(r<=row-1) && (c>1) && (c<=col-1)

 x(r,c)=1;

 if x(r-1,c)==0
 rnew=r-1;
 cnew=c;
 elseif x(r,c+1)==0
 rnew=r;
 cnew=c+1;
 elseif x(r+1,c)==0
 rnew=r+1;
 cnew=c;
 elseif x(r,c-1)==0
 rnew=r;
 cnew=c-1;
 elseif x(r-1,c-1)==0
 rnew=r-1;
 cnew=c-1;
 elseif x(r-1,c+1)==0
 rnew=r-1;
 cnew=c+1;
 elseif x(r+1,c+1)==0
 rnew=r+1;
 cnew=c+1;
 elseif x(r+1,c-1)==0
 rnew=r+1;
 cnew=c-1;
 else %it is a single isolated pixel
 rnew=r;
 cnew=c;
 singlepoint=1;
 end

 r=rnew;

97

 c=cnew;
 linelength=linelength+1;
 checkbif=bif(r,c);

 rtotal=[rtotal;rnew];
 ctotal=[ctotal;cnew];
 end

 if checkbif == 1 %Bifurcation not reached - replace points
 for h=1:length(rtotal)
 x(rtotal(h),ctotal(h))=0;
 x(k,m)=0;
 end
 end

 if singlepoint == 1 %delete isolated pixel
 x(k,m)=1;
 end
 end
 end
end

y=x;

%%
%%
%%

• removehorizduplicate.m

function y=removehorizduplicate(x)

%---
% This function locates duplicate horizontal lines in thinned image and turns
% the lower of the two lines from black to white
% ---
% Input: Thinned image
%
% Output: Thinned image with duplicate horizontal lines removed
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

[row,col]=size(x);

for k=5:row-5

98

 for m=1:col-5

 scanright=0;
 scanleft=0;
 rightshift=1;
 leftshift=1;

 horizsum=sum(x(k,m:m+5));

 if horizsum == 0 %straight line, check for lines beneath

 horizsum1=sum(x(k+1,m:m+5));
 horizsum2=sum(x(k+2,m:m+5));
 horizsum3=sum(x(k+3,m:m+5));
 horizsum4=sum(x(k+4,m:m+5));
 horizsum5=sum(x(k+5,m:m+5));

 sumvector=[horizsum1,horizsum2,horizsum3,horizsum4,horizsum5];

 lineindex=find(sumvector == 0);

 if length(lineindex) > 0 %i.e. not an empty vector

 x(k+lineindex(1),m)=1; %turn to white

 while scanright == 0
 scanright=x(k+lineindex(1),m+rightshift);

 if scanright == 0
 x(k+lineindex(1),m+rightshift)=1;
 end

 rightshift=rightshift+1;
 end

 while scanleft == 0
 scanleft=x(k+lineindex(1),m-leftshift);

 if scanleft == 0
 x(k+lineindex(1),m-leftshift)=1;
 end

 leftshift=leftshift+1;
 end

99

 end
 end
 end
end

y=x;

%%
%%
%%

• removevertduplicate.m

function y=removevertduplicate(x)

%---
% This function locates duplicate vertical lines in thinned image and
% deletes the unwanted segment
% ---
% Input: Thinned image
%
% Output: Thinned image with duplicate vertical lines removed
%
% Functions Used: segmentlength.m, deletevertseg.m
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

[row,col]=size(x);

[xlineend,xbif]=detect_term_bif(x);

counter=0;

for k=10:row-10
 for m=10:col-10

 scanup=0;
 scandown=0;
 upshift=1;
 downshift=1;

 vertsum=sum(x(k:k+10,m));

 if vertsum == 0 %vertical line, check for lines beside

100

 Rvertsum1=sum(x(k:k+10,m+1));
 Rvertsum2=sum(x(k:k+10,m+2));
 Rvertsum3=sum(x(k:k+10,m+3));
 Rsumvector=[Rvertsum1,Rvertsum2,Rvertsum3];
 Rlineindex=find(Rsumvector == 0);

 if length(Rlineindex) > 0 %i.e. not an empty vector

 counter=counter+1;

 length1=segmentlength(x,k,m);
 length2=segmentlength(x,k,m+Rlineindex(1));

 if (length1 < length2) %delete the smaller segment
 x=deletevertseg(x,k,m);
 elseif (length2 < length1)
 x=deletevertseg(x,k,m+Rlineindex(1));
 end

 % when length1 == length2, segmentlength has reached the
 % maximum allowable count, and neither is a spurious line

 end
 end

 end
end

counter;
y=x;

%%
%%
%%

• deletevertseg.m

function y2=deletevertseg(x,r1,c1)

%---
% This function deletes unwanted duplicate vertical segments by tracing
% it downward and deleting pixel by pixel until end of segment is reached
% ---
% Input: x - thinned image
% r1 - row index of ridge at location where deletion begins
% c1 - column index of ridge at location where deletion begins
%

101

% Output: Thinned image without duplicate vertical segment
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

%Used in conjunction with removevertduplicate

keeptracing=1;
rnew=0;
cnew=0;

x(r1,c1)=1; %Turn white

%move down to begin

if x(r1+1,c1)==0
 rnew=r1+1;
 cnew=c1;
 x(rnew,cnew)=1;
elseif x(r1+1,c1-1)==0
 rnew=r1+1;
 cnew=c1-1;
 x(rnew,cnew)=1;
elseif x(r1+1,c1+1)==0
 rnew=r1+1;
 cnew=c1+1;
 x(rnew,cnew)=1;
else
 keeptracing=0;
end

r=rnew;
c=cnew;

while keeptracing == 1

 x(r,c)=1;

 if x(r-1,c)==0
 rnew=r-1;
 cnew=c;
 elseif x(r,c+1)==0
 rnew=r;
 cnew=c+1;
 elseif x(r+1,c)==0

102

 rnew=r+1;
 cnew=c;
 elseif x(r,c-1)==0
 rnew=r;
 cnew=c-1;
 elseif x(r-1,c-1)==0
 rnew=r-1;
 cnew=c-1;
 elseif x(r-1,c+1)==0
 rnew=r-1;
 cnew=c+1;
 elseif x(r+1,c+1)==0
 rnew=r+1;
 cnew=c+1;
 elseif x(r+1,c-1)==0
 rnew=r+1;
 cnew=c-1;
 else
 keeptracing=0;
 end

 r=rnew;
 c=cnew;

end

y2=x;

%%
%%
%%

• segmentlength.m

function total=segmentlength(x,startingrow,startingcol)

%---
% This function traces a segment until it reaches an end or arrives
% at the maximum trace distance, while maintaining a count of total
% segment length
% ---
% Input: x - thinned image
% startingrow - row index to start trace
% startingcol - column index to start trace
%
% Output: Number indicating total trace length
%

103

% Author: Graig Diefenderfer
% Date: May 2006
%---

%Used in conjunction with removevertduplicate, and begins by searching
%downward

total=1;
keeptracing=1;
rnew=0;
cnew=0;

x(startingrow,startingcol)=1; %Turn white

%search down to begin

if x(startingrow+1,startingcol)==0
 rnew=startingrow+1;
 cnew=startingcol;
 x(rnew,cnew)=1;
elseif x(startingrow+1,startingcol-1)==0
 rnew=startingrow+1;
 cnew=startingcol-1;
 x(rnew,cnew)=1;
elseif x(startingrow+1,startingcol+1)==0
 rnew=startingrow+1;
 cnew=startingcol+1;
 x(rnew,cnew)=1;
else
 keeptracing=0;
end

r=rnew;
c=cnew;

while (keeptracing == 1) && (total < 40)

 x(r,c)=1;

 if x(r-1,c)==0
 rnew=r-1;
 cnew=c;
 elseif x(r,c+1)==0
 rnew=r;
 cnew=c+1;
 elseif x(r+1,c)==0

104

 rnew=r+1;
 cnew=c;
 elseif x(r,c-1)==0
 rnew=r;
 cnew=c-1;
 elseif x(r-1,c-1)==0
 rnew=r-1;
 cnew=c-1;
 elseif x(r-1,c+1)==0
 rnew=r-1;
 cnew=c+1;
 elseif x(r+1,c+1)==0
 rnew=r+1;
 cnew=c+1;
 elseif x(r+1,c-1)==0
 rnew=r+1;
 cnew=c-1;
 else
 keeptracing=0;
 end

 r=rnew;
 c=cnew;
 total=total+1;
end

%%
%%
%%

• thinbwimage.m

function y=thinbwimage(xin)

%---
% This function is the main code for thinning via the central line
% method
% ---
% Input: Black and White image in matrix form
%
% Output: Thinned image
%
% Author: Graig Diefenderfer (Developed from process described in
% [Ahmed & Ward, 2002])
% Date: May 2006
%---

105

%%%% Black pixel = 0
%%%% White pixel = 1

x=xin;
y=xin;
[row,col]=size(x);
stopscanmatrix=zeros(row,col); %used in debugging
difference=1;

while(difference ~= 0)

 for k=3:row-3
 for m=3:col-3

 twover=0;
 twohor=0;
 stopscan=0;

 if x(k,m)==0

%%%
% Check to see if the pixel belongs to two pixels width in vertical then
% horizontal direction

 if (x(k-1,m)==1 && x(k+1,m)==0 && x(k+2,m)==1) || …

(x(k-2,m)==1 && x(k-1,m)==0 && x(k+1,m)==1)

 twover = 1;
 end

 if (x(k,m-1)==1 && x(k,m+1)==0 && x(k,m+2)==1) || …

(x(k,m-2)==1 && x(k,m-1)==0 && x(k,m+1)==1)

 twohor = 1;
 end

%%%
% Begin analysis for two pixel width in vertical direction

 if twover==1

if (x(k,m-1)==0 && x(k+1,m-1)==0 && x(k+1,m)==0 && …
 x(k+1,m+1)==0 && x(k,m+1)==0 && x(k-1,m)==1 && x(k+2,m)==1)

 stopscan = 1;

106

 elseif (x(k,m-1)==0 && x(k-1,m-1)==0 && x(k-1,m)==0 && …
 x(k-1,m+1)==0 && x(k,m+1)==0 && x(k-2,m)==1 && x(k+1,m)==1)

 y(k,m) = 1; %delete pixel
 stopscan = 1;

 end

 if stopscan==0

 if(x(k+1,m)==0 && x(k+1,m-1)==0 && x(k+2,m-1)==0 && …

 x(k,m-1)==1 && x(k-1,m-1)==1 && x(k-1,m)==1 && …
 x(k-1,m+1)==1 && x(k,m+1)==1 && x(k+1,m+1)==1 && ...
 x(k+2,m+1)==1 && x(k+2,m)==1)

 stopscan = 1;

 elseif (x(k+1,m)==0 && x(k+1,m+1)==0 && x(k+2,m+1)==0 && …
 x(k+2,m)==1 && x(k+2,m-1)==1 && x(k+1,m-1)==1 && …
 x(k,m-1)==1 && x(k-1,m-1)==1 && x(k-1,m)==1 && …
 x(k-1,m+1)==1 && x(k,m+1)==1)
 stopscan = 1;

 elseif (x(k-1,m)==0 && x(k-1,m-1)==0 && x(k-2,m-1)==0 && …
 x(k-2,m)==1 && x(k-2,m+1)==1 && x(k-1,m+1)==1 && …
 x(k,m+1)==1 && x(k+1,m+1)==1 && x(k+1,m)==1 && …
 x(k+1,m-1)==1 && x(k,m-1)==1)
 stopscan = 1;

 elseif (x(k-1,m)==0 && x(k-1,m+1)==0 && x(k-2,m+1)==0 && …
 x(k-2,m)==1 && x(k-2,m-1)==1 && x(k-1,m-1)==1 && …
 x(k,m-1)==1 && x(k+1,m-1)==1 && x(k+1,m)==1 && …
 x(k+1,m+1)==1 && x(k,m+1)==1)
 stopscan = 1;

 end

 end

 end

%%%
% Begin analysis for two pixel width in horizontal direction

 if twohor==1

107

 if(x(k-1,m)==0 && x(k-1,m+1)==0 && x(k,m+1)==0 && …
 x(k+1,m+1)==0 && x(k+1,m)==0 && x(k,m-1)==1 && x(k,m+2)==1)

 stopscan = 1;

 elseif (x(k-1,m)==0 && x(k-1,m-1)==0 && x(k,m-1)==0 && …
 x(k+1,m-1)==0 && x(k+1,m)==0 && x(k,m-2)==1 && x(k,m+1)==1)

 y(k,m) = 1; %delete pixel
 stopscan = 1;

 end

 if stopscan==0

 if(x(k,m+1)==0 && x(k+1,m+1)==0 && x(k+1,m+2)==0 && …
 x(k,m+2)==1 && x(k-1,m+2)==1 && x(k-1,m+1)==1 && …
 x(k-1,m)==1 && x(k-1,m-1)==1 && x(k,m-1)==1 && …
 x(k+1,m-1)==1 && x(k+1,m)==1)
 stopscan = 1;

 elseif (x(k,m+1)==0 && x(k-1,m+1)==0 && x(k-1,m+2)==0 && …
 x(k,m+2)==1 && x(k+1,m+2)==1 && x(k+1,m+1)==1 && …
 x(k+1,m)==1 && x(k+1,m-1)==1 && x(k,m-1)==1 && …
 x(k-1,m-1)==1 && x(k-1,m)==1)
 stopscan = 1;

 elseif (x(k,m-1)==0 && x(k+1,m-1)==0 && x(k+1,m-2)==0 && …
 x(k,m-2)==1 && x(k-1,m-2)==1 && x(k-1,m-1)==1 && …
 x(k-1,m)==1 && x(k-1,m+1)==1 && x(k,m+1)==1 && …
 x(k+1,m+1)==1 && x(k+1,m)==1)
 stopscan = 1;

 elseif (x(k,m-1)==0 && x(k-1,m-1)==0 && x(k-1,m-2)==0 && …
 x(k,m-2)==1 && x(k+1,m-2)==1 && x(k+1,m-1)==1 && …
 x(k+1,m)==1 && x(k+1,m+1)==1 && x(k,m+1)==1 && …
 x(k-1,m+1)==1 && x(k-1,m)==1)
 stopscan = 1;

 end

 end

 end

 stopscanmatrix(k,m)=stopscan;

108

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Apply 21 rules to pixel

 if stopscan==0

 %obtain the value for each surrounding pixel
 %
 % b1 b2 b3
 % b8 x b4
 % b7 b6 b5
 %

 b1=x(k-1,m-1);
 b2=x(k-1,m);
 b3=x(k-1,m+1);
 b4=x(k,m+1);
 b5=x(k+1,m+1);
 b6=x(k+1,m);
 b7=x(k+1,m-1);
 b8=x(k,m-1);

%1
 if(b1==0 && b6==0 && b7==0 && b8==0 && b3==1 && b4==1)
 y(k,m)=1;

%2
 elseif(b1==0 && b2==0 && b7==0 && b8==0 && b4==1 && b5==1)
 y(k,m)=1;

%3
 elseif(b1==0 && b2==0 && b3==0 && b4==0 && b6==1 && b7==1)
 y(k,m)=1;

%4
 elseif(b1==0 && b2==0 && b3==0 && b8==0 && b5==1 && b6==1)
 y(k,m)=1;

%5
 elseif(b1==0 && b8==0 && b3==1 && b4==1 && b5==1 && b6==1)
 y(k,m)=1;

%6
 elseif(b1==0 && b2==0 && b4==1 && b5==1 && b6==1 && b7==1)
 y(k,m)=1;

109

%7
 elseif(b1==0 && b2==0 && b3==0 && b5==0 && b6==0 && …
 b7==0 && b8==0 && b4==1)
 y(k,m)=1;

%8
 elseif(b1==0 && b2==0 && b3==0 && b4==0 && b5==0 && …
 b7==0 && b8==0 && b6==1)
 y(k,m)=1;

%9
 elseif(b7==0 && b8==0 && b2==1 && b3==1 && b4==1 && b5==1)
 y(k,m)=1;

%10
 elseif(b6==0 && b7==0 && b1==1 && b2==1 && b3==1 && b4==1)
 y(k,m)=1;

%11
 elseif(b2==0 && b3==0 && b5==1 && b6==1 && b7==1 && b8==1)
 y(k,m)=1;

%12
 elseif(b3==0 && b4==0 && b1==1 && b6==1 && b7==1 && b8==1)
 y(k,m)=1;

%13
 elseif(b5==0 && b6==0 && b1==1 && b2==1 && b3==1 && b8==1)
 y(k,m)=1;

%14
 elseif(b4==0 && b5==0 && b1==1 && b2==1 && b7==1 && b8==1)
 y(k,m)=1;

%15
 elseif(b1==0 && b2==0 && b3==0 && b4==0 && b5==0 && …
 b6==0 && b7==0 && b8==1)
 y(k,m)=1;

%16
 elseif(b1==0 && b3==0 && b4==0 && b5==0 && b6==0 && …
 b7==0 && b8==0 && b2==1)
 y(k,m)=1;

%17

110

 elseif(b3==0 && b4==0 && b5==0 && b6==0 && b1==1 && b8==1)
 y(k,m)=1;

%18
 elseif(b2==0 && b3==0 && b4==0 && b5==0 && b7==1 && b8==1)
 y(k,m)=1;

%19
 elseif(b4==0 && b5==0 && b6==0 && b7==0 && b1==1 && b2==1)
 y(k,m)=1;

%20
 elseif(b5==0 && b6==0 && b7==0 && b8==0 && b2==1 && b3==1)
 y(k,m)=1;

%21
 elseif(b1==1 && b2==1 && b3==1 && b4==1 && b5==1 && …
 b6==1 && b7==1 && b8==1)
 y(k,m)=1;

 end

 end

 end %closes initial 'if x(k,m)==0' loop

 end
 end

 difference=sum(sum(y-x)); %compare the difference between images
 %If difference == 0, then no change has
 %taken place and thinning is complete.
 %The code will then exit the while loop
 x=y;

end %closes while loop

%%%
% Apply diagonal rules to thinned image

for k=3:row-3
 for m=3:col-3

 if y(k,m)==0

 %obtain the value for each surrounding pixel

111

 %
 % p1 p2 p3
 % p8 x p4
 % p7 p6 p5
 %

 p1=y(k-1,m-1);
 p2=y(k-1,m);
 p3=y(k-1,m+1);
 p4=y(k,m+1);
 p5=y(k+1,m+1);
 p6=y(k+1,m);
 p7=y(k+1,m-1);
 p8=y(k,m-1);

 if (p2==0 && p8==0 && p4==1 && p5==1 && p6==1) %D1
 y(k,m)=1;
 elseif(p4==0 && p6==0 && p1==1 && p2==1 && p8==1) %D2
 y(k,m)=1;
 elseif(p2==0 && p4==0 && p6==1 && p7==1 && p8==1) %D3
 y(k,m)=1;
 elseif(p6==0 && p8==0 && p2==1 && p3==1 && p4==1) %D4
 y(k,m)=1;
 end

 end

 end
end

%%
%%
%%

• get_minutiae_data.m

function min_data2=get_minutiae_data(fingfile,thinningmethod)

%---
% This function will take an input fingerprint file and locate the
% terminations and bifurcations. It will also plot the locations of
% these minutiae superimposed on the original black and white image.
% ---
% Input: fingfile - filename of input fingerprint image, in string format
% thinningmethod - thinning method to be used
% (1=central line, 2=block filter)

112

%
% Output: Minutiae data in matrix format
% column 1: row indices
% column 2: column indices
% column 3: angle orientation
% column 4: type of minutiae (1=termination, 2=bifurcation)
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

orig=imread(fingfile);
bw=im2bw(orig(:,:,1),185/255);
bw1=bw-0; %make it a double
bw1(1:18,:)=1; %erase title
[rows,cols]=size(orig(:,:,1));

%figure(6),imshow(orig)

%Thin the fingerprint image
if thinningmethod==1
 z1=thinbwimage(bw1);
elseif thinningmethod==2
 z1=thin_blockfilter(bw1);
end
%figure(17),imshow(z1)

[term,bifur]=detect_term_bif(z1);
z1=linetrace(z1,term,term,17); %remove short island segments
z1=linetrace(z1,term,bifur,8); %remove spurs
%figure(18),imshow(z1)

[term,bifur]=detect_term_bif(z1);

%%%
% isolate good portion of fingerprint via an ellipse

ellips=ones(rows,cols);
[blrow,blcol]=find(z1==0); %locate all black pixels
rowrange=max(blrow)-min(blrow);
colrange=max(blcol)-min(blcol);
rowcenter=min(blrow)+ (rowrange/2);
colcenter=min(blcol)+ (colrange/2);
ellipse_a=0.47*rowrange;
ellipse_b=0.43*colrange;

113

for k=1:rows
 for m=1:cols

 ellipsecalc=((k-rowcenter)^2)/(ellipse_a^2)+((m-colcenter)^2)/(ellipse_b^2);

 if ellipsecalc < 1 %within ellipse, turn to black
 ellips(k,m)=0;
 end
 end
end

%figure(19),imshow((ellips+z1)/2)

x_term1=((ellips+term)/2);
x_term=im2bw(x_term1,0.1);
x_term=x_term-0; %make it a double

x_bifur1=((ellips+bifur)/2);
x_bifur=im2bw(x_bifur1,0.1);
x_bifur=x_bifur-0; %make it a double

%%%
% get indices for terminations and bifurcations

[term_row,term_col]=find(x_term==0);
termpoints=length(term_row);
[bifur_row,bifur_col]=find(x_bifur==0);
bifurpoints=length(bifur_row);

term_angle = determine_term_angles(z1,term_row,term_col);

term_data=zeros(termpoints,3);
term_data(:,1)=term_row;
term_data(:,2)=term_col;
term_data(:,3)=term_angle;

%The terminations of the inverted image correspond to the bifurcations in
%the original image

bwinvert=abs(1-bw); %Invert original image
%Thin the inverted fingerprint image
if thinningmethod==1
 thininvert=thinbwimage(bwinvert);
elseif thinningmethod==2
 thininvert=thin_blockfilter(bwinvert);
end

114

[term_inv,bifur_inv]=detect_term_bif(thininvert);
term_inv=((term_inv+ellips)/2); %isolate good region of fingerprint
term_inv=im2bw(term_inv,0.1);
term_inv=term_inv-0; %make it a double
[term_inv_row,term_inv_col]=find(term_inv==0);

bifur_data=determine_bif_angles(thininvert, bifur_row, bifur_col, term_inv_row,
term_inv_col);

%%%
% combine terminations and bifurcations into one matrix of data
% column 1: row indices
% column 2: column indices
% column 3: angle orientation
% column 4: type of minutiae (1=termination, 2=bifurcation)

min_data=zeros(termpoints+bifurpoints,4);
min_data(1:termpoints,4)=1; %a 1 in the fourth column indicates termination
min_data(1:termpoints,1:3)=term_data;
min_data(termpoints+1:termpoints+bifurpoints,4)=2; %a 2 indicates bifurcation
min_data(termpoints+1:termpoints+bifurpoints,1:3)=bifur_data;

%%%
% remove terminations at edges of image

min_data2=remove_edge_term(min_data,z1);

%%%
% plot minutiae, with line indicating angle orientation

min_display=plot_minutiae(min_data2,rows,cols);
figure(20),imshow(min_display)
figure(21),imshow((min_display/1.5)+(bw1/5))

%%
%%
%%

• determine_term_angles.m

function y_angle = determine_term_angles(x,rowindex,colindex)

%---
% This function computes the angles of terminations in a thinned image
% ---

115

% Input: x - thinned fingerprint image
% rowindex - row indices of terminations
% colindex - column indices of terminations
%
% Output: Corresponding orientation angles of each termination
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

[row,col]=size(x);
numpoints=length(rowindex);
y_angle=zeros(numpoints,1);

maxtrace=5;
totaltrace=0;
r=0;
c=0;
rnew=0;
cnew=0;

for k=1:numpoints

 r=rowindex(k);
 c=colindex(k);
 totaltrace=0;

 while(totaltrace < maxtrace)

 x(r,c)=1;

 if x(r-1,c)==0
 rnew=r-1;
 cnew=c;
 elseif x(r,c+1)==0
 rnew=r;
 cnew=c+1;
 elseif x(r+1,c)==0
 rnew=r+1;
 cnew=c;
 elseif x(r,c-1)==0
 rnew=r;
 cnew=c-1;
 elseif x(r-1,c-1)==0
 rnew=r-1;
 cnew=c-1;

116

 elseif x(r-1,c+1)==0
 rnew=r-1;
 cnew=c+1;
 elseif x(r+1,c+1)==0
 rnew=r+1;
 cnew=c+1;
 elseif x(r+1,c-1)==0
 rnew=r+1;
 cnew=c-1;
 end

 r=rnew;
 c=cnew;
 totaltrace=totaltrace+1;

 end %at the end of the while loop, r and c represent the indices
 %that will be used to calculate the angle of the termination

 r1=rowindex(k);
 c1=colindex(k);
 r2=r;
 c2=c;

 if(c1==c2 && r1>r2)
 y_angle(k)=270;

 elseif(c1==c2 && r2>r1)
 y_angle(k)=90;

 elseif(r1==r2 && c1>c2)
 y_angle(k)=0;

 elseif(r1==r2 && c2>c1)
 y_angle(k)=180;

 elseif(r1>r2 && c1>c2)
 y_angle(k)=360-(atan((r1-r2)/(c1-c2))*180/pi);

 elseif(c1>c2 && r2>r1)
 y_angle(k)=90-(atan((c1-c2)/(r2-r1))*180/pi);

 elseif(r1>r2 && c2>c1)
 y_angle(k)=180+(atan((r1-r2)/(c2-c1))*180/pi);

 elseif(c2>c1 && r2>r1)
 y_angle(k)=90+(atan((c2-c1)/(r2-r1))*180/pi);

117

 end

end

%%
%%
%%

• determine_bif_angles.m

function y=determine_bif_angles(xinv,biforow,bifocol,termirow,termicol)

%---
% This function computes the angles of bifurcations in a thinned image
% ---
% Input: xinv - thinned inverted fingerprint image
% biforow - bifurcations from original image, row indices
% bifocol - bifurcations from original image, column indices
% termirow - terminations from inverted image, row indices
% termicol - terminations from inverted image, column indices
%
% Output: Matrix of data
% column1 - bifurcation row indices
% column2 - bifurcation column indices
% column3 - bifur angles assigned to row/col coordinates
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

invtermangles=determine_term_angles(xinv,termirow,termicol);
invtermpoints=length(termirow);
invtermdata=zeros(invtermpoints,3);
invtermdata(:,1)=termirow;
invtermdata(:,2)=termicol;
invtermdata(:,3)=invtermangles;

bifpoints=length(biforow);
bifdata=zeros(bifpoints,3);
bifdata(:,1)=biforow;
bifdata(:,2)=bifocol;

%%%
%Compare position locations between terminations of inverted image to
%bifurcations of original image. If a termination of the inverted image

118

%lies close to a bifurcation in the original image, assign the angle of
%the termination as the angle of the bifurcation. If a bifurcation does
%not match any terminations, keep its angle at zero.

for k=1:bifpoints

 lowestdistance=100; %reset lowestdistance variable

 for m=1:invtermpoints

 rowdif=abs(bifdata(k,1)-invtermdata(m,1));
 coldif=abs(bifdata(k,2)-invtermdata(m,2));
 absolutedistance = sqrt(rowdif^2+coldif^2);

 if (absolutedistance <= 15) && (absolutedistance < lowestdistance)

 bifdata(k,3)=invtermdata(m,3); %assign angle value

 lowestdistance=absolutedistance; %change lowestdistance
 end

 end
end

y=bifdata;

%%
%%
%%

• plot_minutiae.m

function y=plot_minutiae(mdata,row,col)

%---
% This function generates a matrix that highlights the minutiae along
% with their orientation angle. Squares represent terminations and
% diamonds represent bifurcations.
% ---
% Input: mdata - matrix of input minutiae data
% column 1: row indices
% column 2: column indices
% column 3: angle orientation
% column 4: type of minutiae (1=termination, 2=bifurcation)
% row - number of rows in original image
% col - number of columns in original image

119

%
% Output: Matrix of data ready to be plotted
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

[nrows,ncols]=size(mdata);

stdline=zeros(15,15);
stdline(8,8:15)=1;

% draw square at terminations and diamond at bifurcations

squ=ones(5,5);
squ(1,1:5)=0;
squ(2:4,5)=0;
squ(5,1:5)=0;
squ(2:4,1)=0;

diamond=ones(5,5);
diamond(1,3)=0;
diamond(2,2)=0;
diamond(3,1)=0;
diamond(4,2)=0;
diamond(5,3)=0;
diamond(4,4)=0;
diamond(3,5)=0;
diamond(2,4)=0;

y1=ones(row,col);
y2=zeros(row,col);

for k=1:nrows %nrows is equal to the total number of minutiae
 rindex=mdata(k,1);
 cindex=mdata(k,2);
 newline=zeros(row,col); %matrix of entire figure, will have ones only where new line

%will be added

 %draw squares and diamonds
 if mdata(k,4)==1 %termination
 y1(rindex-2:rindex+2,cindex-2:cindex+2)=squ;

 elseif mdata(k,4)==2 %bifurcation
 y1(rindex-2:rindex+2,cindex-2:cindex+2)=diamond;

120

 end

 drawline=stdline;
 drawline=imrotate(stdline,mdata(k,3)); %has ones where line is

 [rline,cline]=size(drawline);
 midrow=ceil(rline/2);
 midcol=ceil(cline/2);

 newline(rindex-midrow+1:rindex+(rline-midrow),cindex-midcol+1:cindex+ …

 (cline-midcol))=drawline;

 y2=y2+newline;

end

%y2 has positive integer values at locations where a line should be drawn
y2=im2bw(y2,0.1);
y2=abs(1-y2); %invert image, to have lines be drawn black

y=(y1+y2)/2;
y=im2bw(y,0.9);
y=y-0; %make it a double

%%
%%
%%

• minutiae_match.m

function ym=minutiae_match(idata,tdata)

%---
% This function takes two matrices of data, and computes the overall matching score
% between the two sets.
% ---
% Input: idata - Input fingerprint data
% tdata - Template fingerprint data
%
% column 1: row indices
% column 2: column indices
% column 3: angle orientation
% column 4: type of minutiae (1=termination, 2=bifurcation)
%
% Output: Matching score between the two matrices of minutiae data
%

121

% Functions Used: match_score.m
%
% Author: Graig Diefenderfer (Developed from process described in
% [Luo, Tian, & Wu, 2000])
% Date: May 2006
%---

[idatarow,idatacol]=size(idata);
[tdatarow,tdatacol]=size(tdata);
matchingscore=zeros(tdatarow,idatarow);

%number of minutiae points for input and template is equal to the number of
%rows in idata and tdata, respectively

%create a matrix containing all the possible rotation values
rotatevalues=zeros(tdatarow,idatarow);
for k=1:tdatarow
 for m=1:idatarow
 rotatevalues(k,m)=tdata(k,3)-idata(m,3);
 end
end

%convert each minutiae point to polar coordinates with respect to the
%reference minutiae in each case
for k=1:tdatarow
 for m=1:idatarow

 tdatapolar=zeros(tdatarow,tdatacol);
 idatapolar=zeros(idatarow,idatacol);

 tref=tdata(k,:);
 iref=idata(m,:);

 tdatapolar(:,1)=sqrt((tdata(:,1)-tref(1)).^2 + (tdata(:,2)-tref(2)).^2);
 tdatapolar(:,2)=atan2(tref(1)-tdata(:,1),tdata(:,2)-tref(2)) * 180/pi;
 %rows give y displacement, cols give x diplacement
 tdatapolar(:,2)=mod(tdatapolar(:,2),360); %get angles between 0 and 360
 tdatapolar(:,3)=tdata(:,3)-tref(3);
 tdatapolar(:,3)=mod(tdatapolar(:,3),360); %get angles between 0 and 360
 tdatapolar(:,4)=tdata(:,4);

 idatapolar(:,1)=sqrt((idata(:,1)-iref(1)).^2 + (idata(:,2)-iref(2)).^2);
 idatapolar(:,2)=(atan2(iref(1)-idata(:,1),idata(:,2)-iref(2)) * 180/pi) + …

rotatevalues(k,m);
 idatapolar(:,2)=mod(idatapolar(:,2),360); %get angles between 0 and 360
 idatapolar(:,3)=idata(:,3)-iref(3);

122

 idatapolar(:,3)=mod(idatapolar(:,3),360); %get angles between 0 and 360
 idatapolar(:,4)=idata(:,4);

 matchingscore(k,m)=compute_match_score(tdatapolar,idatapolar);

 end
end

maxmatchingscore=max(max(matchingscore));
maxminutiae=max(idatarow,tdatarow); %get maximum minutiae values between input
and template

ym=maxmatchingscore/maxminutiae;

%%
%%
%%

• compute_match_score.m

function mscore=compute_match_score(tpol,ipol)

%---
% This function is called from the minutiae_matching function. It
% compares the data and computes their matching score.
% ---
% Input: tpol - template data points, in polar coordinates
% ipol - input data points, in polar coordinates
% column 1: radial distance
% column 2: radial angle
% column 3: minutiae orientation
% column 4: type of minutiae (1=termination, 2=bifurcation)
%
% Output: Matching score for one combination of reference points
%
% Author: Graig Diefenderfer (Developed from process described in
% [Luo, Tian, & Wu, 2000])
% Date: May 2006
%---

tpoints=size(tpol,1); %number of rows=number of template points
ipoints=size(ipol,1); %number of rows=number of input points

%use fixed size bounding box for all template points
radsize=zeros(tpoints,1);
angsize=zeros(tpoints,1);

123

radsize(:)=6;
angsize(:)=10;

radlow=-radsize./2;
radhigh=radsize./2;

anglow=-angsize./2;
anghigh=angsize./2;

epsillon=10;
mscore=0;

for kk=1:tpoints
 for mm=1:ipoints

 rdiff=tpol(kk,1)-ipol(mm,1);
 ediff=tpol(kk,2)-ipol(mm,2);
 thetadiff=tpol(kk,3)-ipol(mm,3);

 if ((radlow(kk) < rdiff) && (rdiff < radhigh(kk)) && (anglow(kk) < ediff) && …

(ediff < anghigh(kk)) && (abs(thetadiff) < epsillon) && …
(tpol(kk,4)==ipol(mm,4)))

 mscore=mscore+1;
 tpol(kk,4)=3; %Change type of minutiae, indicating it has been used in a match

%already
 end

 end
end

%%
%%
%%

• remove_edge_term.m

function ym=remove_edge_term(mdata,xthin)

%---
% This function removes terminations that lie near the edges of the
% fingerprint image. These terminations are not true minutiae, but they
% appear as terminations because the ridges are cutoff along the edges of
% the image.
% ---

124

% Input: mdata - matrix of input minutiae data
% column 1: row indices
% column 2: column indices
% column 3: angle orientation
% column 4: type of minutiae (1=termination, 2=bifurcation)
% xthin - thinned fingerprint image
%
% Output: Matrix of minutiae data with incorrect terminations along the
% edges removed
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

ym=mdata;
[mrows,mcols]=size(mdata);
searchlength=20;
remterm=0;

rowcount=1; %represents minutiae data number
checktype=mdata(rowcount,4);

[thinrow,thincol]=size(xthin);

while checktype==1 && rowcount<=mrows %only use terminations

 mangle=(mdata(rowcount,3));
 rstart=mdata(rowcount,1);
 cstart=mdata(rowcount,2);

 if ((mangle >= 45) && (mangle < 135)) || ((mangle >= 225) && (mangle <315))
 %search left and right, ensuring that the search window stays within
 %the dimensions of the thinned image, and the search length doesn't
 %exceed the value of searchlength defined previously
 sleft=min((cstart-1),searchlength);
 sright=min((thincol-cstart),searchlength);
 leftpoints=xthin(rstart,cstart-sleft:cstart-1);
 rightpoints=xthin(rstart,cstart+1:cstart+sright);

 flipleft=1-leftpoints; %now, white pixels = 0, black pixels = 1
 flipright=1-rightpoints;

 %if all elements in flipright or flipleft are white (0), then this
 %termination is on the edge of the image and should be removed

 if (sum(flipleft)==0) || (sum(flipright)==0)

125

 ym(rowcount,4)=0; %change termination type, indicating it should be deleted
 end

 else %search up and down, ensuring that the search window stays
 %within the dimensions of the thinned image, and the search length
 %doesn't exceed the value of searchlength defined previously
 sup=min((rstart-1),searchlength);
 sdown=min((thinrow-rstart),searchlength);
 uppoints=xthin(rstart-sup:rstart-1,cstart);
 downpoints=xthin(rstart+1:rstart+sdown,cstart);

 flipup=1-uppoints; %now, white pixels = 0, black pixels = 1
 flipdown=1-downpoints;

 if (sum(flipup)==0) || (sum(flipdown)==0)
 ym(rowcount,4)=0; %change termination type, indicating it should be deleted
 end

 end

 rowcount=rowcount+1;
 if rowcount <= mrows
 checktype=mdata(rowcount,4);
 end
end

delrow=find(ym(:,4)==0);
ym(delrow,:)=[]; %delete rows with 0 in 4th column

%%
%%
%%

• generate_templates.m

%---
% This program generates the template data for the database of synthetic
% images
% ---
% Output: Saved template data in matrix format
%
% Author: Graig Diefenderfer
% Date: May 2006
%---

clear

126

t1_total=0;
t2_total=0;

for k=0:59
 k
 if k < 10 %number is only one character
 newfilename=['s000',num2str(k),'_1.bmp'];
 else %number is two characters
 newfilename=['s00',num2str(k),'_1.bmp'];
 end

 %Perform central thinning
 tic
 templatedata=get_minutiae_data(newfilename,1);
 save([newfilename(1:5),'_t.mat'],'templatedata')
 t1=toc;
 t1_total=t1_total+t1; %Track total elapsed time for central thinning

 %Perform boundary block thinning
 tic
 templatedata=get_minutiae_data(newfilename,2);
 save([newfilename(1:5),'_t2.mat'],'templatedata')
 t2=toc;
 t2_total=t2_total+t2; %Track total elapsed time for block thinning

end

127

LIST OF REFERENCES

Ahmed, M., & Ward, R. (2002). A rotation invariant rule-
based thinning algorithm for character recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24, 1672-1678.

Boulgouris, N.V., Hatzinakos, D., & Plataniotis, K.N.

(2005). Gait recognition: a challenging signal
processing technology for biometric identification.
IEEE Signal Processing Magazine, 22, 78-90.

Daugman, J. (2004). How iris recognition works. IEEE

Transactions on Circuits and Systems for Video
Technology, 14, 21-30.

Faundez-Zanuy, M. (2005). Biometric verification by means

of hand geometry. 39th Annual 2005 International
Carnahan Conference on Security Technology, 61-67.

Faundez-Zanuy, M., & Monte-Moreno, E. (2005). State-of-

the-art in speaker recognition. IEEE Aerospace and
Electronic Systems Magazine, 20, 7-12.

Gao, Y., & Leung, M.K.H. (2002). Face recognition using

line edge map. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24, 764-779.

International Biometric Group. (2003). The Henry

classification system. Retrieved May 23, 2006, from
http://www.biometricgroup.com/Henry%20Fingerprint%20Cl
assification.pdf

Ito, K., Morita, A., Aoki, T., Higuchi, T., Nakajima, H., &

Kobayashi, K. (2005). A fingerprint recognition
algorithm using phase-based image matching for low-
quality fingerprints. Proceedings of IEEE
International Conference on Image Processing, 2, 33-
36.

Jain, A., Hong. L., & Bolle, R. (1997). On-line

fingerprint verification. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19, 302-
314.

128

Jain, A.K., Pankanti, S., Prabhakar, S., Hong, L., & Ross,
A. (2004). Biometrics: a grand challenge. 17th
International Conference on Pattern Recognition, 2,
935-942.

Jain, A.K., Prabhakar, S., Hong, L., & Pankanti, S.

(2000). Filterbank-based fingerprint matching. IEEE
Transactions on Image Processing, 9, 846-859.

Jain, A.K., Ross, A., & Prabhakar, S. (2004). An

introduction to biometric recognition. IEEE
Transactions on Circuits and Systems for Video
Technology, 14, 4-20.

Ko, T. (2005). Multimodal biometric identification for

large user population using fingerprint, face and iris
recognition. Proceedings of the 34th Applied Imagery
and Pattern Recognition Workshop, 218-223.

Luo, X., Tian, J., & Wu, Y. (2000). A minutia matching

algorithm in fingerprint verification. 15th
International Conference on Pattern Recognition, 4,
833-836.

Mainguet, J.F. (2006). Cellphones & PDAs with a built-in

fingerprint sensor. Retrieved April 29, 2006, from
http://perso.wanadoo.fr/fingerchip/biometrics/types/fi
ngerprint_products_pdaphones.htm

Maltoni, D., Maio, D., Jain, A.K., & Prabhakar, S. (2003).

Handbook of fingerprint recognition. New York:
Springer.

Patil, P.M., Suralkar, S.R., & Sheikh, F.B. (2005).

Rotation invariant thinning algorithm to detect ridge
bifurcations for fingerprint identification.
Proceedings of the 17th IEEE International Conference
on Tools with Artificial Intelligence, 634-641.

Pentland, A., & Choudhury, T. (2000). Face recognition

for smart environments. Computer, 33, 50-55.

Seow, B.C., Yeoh, S.K., Lai, S.L., & Abu, N.A. (2002).

Image based fingerprint verification. Student
Conference on Research and Development, 58-61.

129

Tico, M., Immonen, E., Rämö, P., Kuosmanen, P., &
Saarinen, J. (2001). Fingerprint recognition using
wavelet features. IEEE International Symposium on
Circuits and Systems, 2, 21-24.

Woodward, J.D. (1997). Biometrics: privacy’s foe or

privacy’s friend? Proceedings of the IEEE, 85, 1480-
1492.

130

THIS PAGE INTENTIONALLY LEFT BLANK

131

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Jeffrey B. Knorr
Chairman, Department of Electrical
and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Professor Monique P. Fargues
Naval Postgraduate School
Monterey, California

5. Professor Roberto Cristi
Naval Postgraduate School
Monterey, California

6. ENS Graig T. Diefenderfer
Bear, Delaware

